首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.  相似文献   

2.
We deployed two ADCP mooring systems west of the Luzon Strait in August 2008, and measured the upper ocean currents at high frequency. Two typhoons passed over the moorings during approximately one-month observation period. Using ADCP observations, satellite wind and heat flux measurements, and high-resolution model assimilation products, we studied the response of the upper ocean to typhoons. The first typhoon, Nuri, passed over one of the moorings, resulting in strong Ekman divergence and significant surface cooling. The cooling of surface water lagged the typhoon wind forcing about one day and lasted about five days. The second typhoon, Sinlaku, moved northward east of the Luzon Strait, and did not directly impact currents near the observation regions. Sinlaku increased anomalous surface water transport exchange across the Luzon Strait, which modulated the surface layer current of the Kuroshio.  相似文献   

3.
Inter-annual variability of the Kuroshio water intrusion on the shelf of East China Sea (ECS) was simulated with a nested global and Northwest Pacific ocean circulation model. The model analysis reveals the influence of the variability of Kuroshio transport east of Taiwan on the intrusion to the northeast of Taiwan: high correlation (r = 0.92) with the on-shore volume flux in the lower layer (50–200 m); low correlation (r = 0.50) with the on-shore flux in the upper layer (0–50 m). Spatial distribution of correlations between volume fluxes and sea surface height suggests that inter-annual variability of the Kuroshio flux east of Taiwan and its subsurface water intruding to the shelf lag behind the sea surface height anomalies in the central Pacific at 162°E by about 14 months, and could be related to wind-forced variation in the interior North Pacific that propagates westward as Rossby waves. The intrusion of Kuroshio surface water is also influenced by local winds. The intruding Kuroshio subsurface water causes variations of temperature and salinity of bottom waters on the southern ECS shelf. The influence of the intruding Kuroshio subsurface water extends widely from the shelf slope northeast of Taiwan northward to the central ECS near the 60 m isobath, and northeastward to the region near the 90 m isobath.  相似文献   

4.
To study the potential effect of sea spray on the evolution of typhoons,two kinds of sea spray flux parameterizationschemes developed by Andreas (2005) and Andreas and Wang (2006) and Fairall et al.(1994) respectively are incorporated into theregional atmospheric Mesoscale Model version 3.6 (MM5V3) of Pennsylvania State University/National Center for AtmosphericResearch (PSU/NCAR) and the coupled atmosphere-sea spray modeling system is applied to simulate a Western Pacific super ty-phoon Ewiniar in 2006.The simulation results demonstrate that sea spray can lead to a significant increase in heat fluxes at theair-sea interface and the simulated typhoon's intensity.Compared with the results without sea spray,the minimum sea level pressurereduces about 8hPa after taking account of sea spray by Fairall et al.'s parameterization (1994) and about 5hPa by Andreas' (2005)and Andreas and Wang's (2006) parameterization at the end of the model integration,while the maximum 10m wind speed increasesabout 17% and 15% on average,respectively,through the entire simulation time period.Taking sea spray into account also causessignificant changes in Tropical Cyclone (TC) structure due to an enhancement of water vapor and heat transferred from the sea sur-face to the air; therefore,the center structure of the typhoon becomes more clearly defined and the wind speed around the typhooneye is stronger in numerical experiments.The simulations show that different sea spray flux parameterizations make different modifications to the TC structure.  相似文献   

5.
Continuous observation of sea water temperature and current was made at Wenchang Station (19°35′N, 112°E) in 2005. The data collected indicate vigorous internal waves of both short periods and tidal and near-inertial periods. The temperature and current time series during 18-30 September were examined to describe the upper ocean internal wave field response to Typhoon Damrey (0518). The strong wind associated with the typhoon, which passed over the sea area about 45 km south of Wenchang Sta- tion on 25 September, deepened the mixed layer depth remarkably. It decreased the mixed layer temperature while increasing the deep layer temperature, and intensified the near-inertial and high-frequency fluctuations of temperature and current. Power spectra of temperature and current time series indicate significant deviations from those obtained by using the deep ocean internal wave models characterized by a power law. The frequency spectra were dominated by three energetic bands: around the inertial frequency (7.75× 10-6 Hz), tidal frequencies (1.010-25 to 2.4×10-5 Hz), and between 1.4×10-4 and 8.3 × 10-4 Hz. Dividing the field data into three phases (before, during and after the typhoon), we found that the typhoon enhanced the kinetic energy in nearly all the frequency bands, es- pecially in the surface water. The passage of Damrey made a major contribution to the horizontal kinetic energy of the total surface current variances. The vertical energy density distribution, with its peak value at the surface, was an indication that the energy in- jected by the strong wind into the surface current could penetrate downward to the thermocline.  相似文献   

6.
Thirty years of monthly mean anomalies of sea level(SL) at 15 Japanese coastal stations, sea sur-face temperature (SST) and sea level pressure (SLP) in or over the northern Pacific were analyzed bycanonical correlation analysis (CCA) to study the relationship between the interdecadal SL variationand large scale climate state. Given two time-varying fields this technique identifies the pair ofspacial patterns with optimally correlated time series.The results show that there are two important air-sea interactive processes in the extratropicalPacific region for the variation of the SL at the Japanese coast on interdecadal scale. One is theocean heating or cooling of the atmosphere over the Kuroshio extension region, which results in ahuge SLP anomalous vortex with planetary spacial scale big enough to change the global climate. An-other is the large Kuroshio meander phenomenon controlled by the large-scale wind-stress curls oneyear earlier in the adjacent region of the Hawaiian Islands. The first process im  相似文献   

7.
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.  相似文献   

8.
Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers(CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya(MBP) in front of the Amery Ice Shelf(AIS). In late March the upper 100–200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about~(-1).90℃while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m~(-2), heat flux with the values of 9.8–287.0 W m~(-2) loss and the sea ice growth rates of 4.3–11.7 cm d~(-1) were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter(March to October) due to the air-sea-ice interaction, with an average size of about 5.0×10~3 km~2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.  相似文献   

9.
The transport flux residue of surface waves plays an important role in a variety of ocean phenomena, for example, the change in sea surface temperature(SST) and upper mixed layer profile that were studied in a series of recent papers. In the previous studies, its effect was discussed rigorously and fragmented based on numerical modeling. Here we propose a relatively comprehensive and simplified exposition of the wave transport flux residue, and focus on its influence under typhoon conditions with strong background current. An analogue Reynolds Number is presented for tentative comparison with wave-generated turbulence mixing, especially in the coastal area. Numerical results indicate that both overwhelming dynamical mixing processes can remarkably change the coastal environment, and should not be ignored consciously for further marine hazards assessment.  相似文献   

10.
1 Introduction TheMadden JulianOscillation (MJO)isastrongatmosphericconvection phenomenonoccurringovertheEasternIndianOceanandtheTropicalWesternPacific,usuallyinregionswithseasurfacetempera tures (SSTs)over 2 9℃ .Theeastwardmovingofalarge scalecirculat…  相似文献   

11.
We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Taiwan,China,according to the quasi-geostrophic theory of stratified fluids.Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave.When eddies collide with the Kuroshio Current east of Taiwan,China,the spatial structure and volume transport of the Kuroshio Current shows a significant variation.The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current;rather,these waters flow northward along the eastern side of the Kuroshio Current.The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea(ECS).In contrast,the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward.The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic(anticyclonic) eddy decrease(increase)the horizontal potential vorticity(PV) gradient,or PV barrier,whereby the cyclonic(anticyclonic) eddy can(cannot) cross the Kuroshio Current.This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean,which can transport heat and material from the upper open ocean acro s s the Kuroshio Current to the shelf waters.  相似文献   

12.
Analysis of seasonal variation of water masses in East China Sea   总被引:5,自引:0,他引:5  
Seasonal variations of water masses in the East China Sea (ECS) and adjacent areas are investigated, based on historical data of temperature and salinity (T-S). Dynamic and thermodynamic mechanisms that affect seasonal variations of some dominant water masses are discussed, with reference to meteorological data. In the ECS above depth 600 m, there are eight water masses in summer but only five in winter. Among these, Kuroshio Surface Water (KSW), Kuroshio Intermediate Water (KIW), ECS Surface Water (ECSSW), Continental Coastal Water (CCW), and Yellow Sea Surface Water (YSSW) exist throughout the year. Kuroshio Subsurface Water (KSSW), ECS Deep Water (ECSDW), and Yellow Sea Bottom Water (YSBW) are all seasonal water masses, occurring from May through October. The CCW, ECSSW and KSW all have significant seasonal variations, both in their horizontal and vertical extents and their T-S properties. Wind stress, the Kuroshio and its branch currents, and coastal currents are dynamic factors for seasonal variation in spatial extent of the CCW, KSW, and ECSSW, whereas sea surface heat and freshwater fluxes are thermodynamic factors for seasonal variations of T-S properties and thickness of these water masses. In addition, the CCW is affected by river runoff and ECSSW by the CCW and KSW.  相似文献   

13.
Yuan  Liming  Tian  Fenglin  Xu  Suqin  Zhou  Chun  Chen  Jie 《中国海洋湖沼学报》2021,39(6):2153-2166
Journal of Oceanology and Limnology - The Kuroshio Extension (KE) is one of the most eddy-energetic regions in the global ocean. However, most mesoscale eddy studies in the region are focused on...  相似文献   

14.
Almost half of the oceanic water columns exhibit double-diffusion. The importance of double-diffusion in global oceans‘ salt and heat fluxes, water-mass formation and mixing, and circulation is increasingly recognized. However, such an important physical process in the ocean has not been well studied. One of the reasons is the difficulty of parameterizing and quantifying the processes. The paper presented here attempts to quantify the double-diffusive fluxes of salt and heat in the ocean. Previous qualitative analysis by applying the water-mass Turner angle, mTu, to the North Pacific Intermediate Water (NPIW) layer showed a favorable condition for salt-fingering in the upper NPIW due to the overlying warm/salty water above the cold/fresh NPIW core, and a doubly-stable condition in the lower NPIW where potential temperature decreases with depth while salinity increases, inducing double stratification with respect to both potential temperature and salinity. The present study gives a quantitative estimate of double-diffusive fluxes of salt and heat contributed by salt-fingering in the upper NPIW layer.  相似文献   

15.
Mid-latitude air-sea interaction is an important topic that attracts a considerable amount of research interest. The Kuroshio Extension(KE) is one of the main western boundary currents and plays a critical role in the mid-latitude atmospheric circulation. This paper uses the NCEP/NCAR reanalysis and Hadley sea surface temperature datasets to investigate the influence of oceanic fronts in the KE region on surface air temperature in North America over the period 1949–2014. A significant correlation was found between the KE front intensity and the temperatures over North America in autumn and winter. A strong(weak) KE front anomaly in autumn is associated with an increasing(decreasing) surface temperature over western North America but a decreasing(increasing) surface temperature over eastern North America. In winter, central North America warms(cools) when the KE front is strong(weak). The response of the atmospheric circulation, including wind in the high and low troposphere, troughs, and ridges, to the strengthening(weakening) of the KE front is the main cause of these changes in surface temperature.  相似文献   

16.
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation) lack physical constraints and can generate significant errors at land-sea boundarie s and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The effectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4% lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in offshore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.  相似文献   

17.
Based on the GDEM hydrographic data with a resolution of 0.5°×0.5°, the current system (Kuroshio south of Japan and Kuroshio Extension east of Japan) is determined by using the P-Vector Method, and its seasonal variability is investigated. The Kuroshio Meander south of Japan, the two lee-wave meanders in the Kuroshio Extension and the bifurcation of the Kuroshio Extension are properly presented. The path of the Kuroshio Meander, the position of the second (east) meander in the Kuroshio Extension and the bifurcation of the Kuroshio Extension display evident seasonal variation.  相似文献   

18.
Typhoon Durian (2001),which formed over the South China Sea (SCS),was simulated by using the Weather Research and Forecasting (WRF) model. The genesis of typhoon Durian which formed in the monsoon trough was reproduced by numerical simulations. The simulated results agree reasonably well with observations. Two numerical experiments in which the sea surface temperature (SST) was either decreased or increased were performed to investigate the impact of the SST on the genesis of the ty-phoon. When the SST was decreased by 5℃ uniformly for all grids in the model,the winds calculated became divergent in the lower troposphere and convergent in the upper troposphere,creating conditions in which the amount of total latent heat release (TLHR) was low and the tropical cyclone (TC) could not be formed. This simulation shows the importance of the convergence in the lower tropo-sphere and the divergence in the upper troposphere for the genesis of the initial vortex. When the SST was increased by 1℃ uni-formly for all grids,a stronger typhoon was generated in the results with an increase of about 10 m s-1 in the maximum surface wind speed. Only minor differences in intensity were noted during the first 54 h in the simulation with the warmer SST,but apparent dif-ferences in intensity occurred after 54 h when the vortex began to strengthen to typhoon strength. This experiment shows that warmer SST will speed the strengthening from tropical storm strength to typhoon strength and increase the maximum intensity reached,while only minor impact can be seen during the earlier stage of genesis before the TC reaches the tropical storm strength. The results sug-gest that the amount of TLHR may be the dominant factor in determining the formation and the intensification of the TC.  相似文献   

19.
As an important marginal sea under the influences of both the Changjiang River and the Kuroshio, the East China Sea (ECS) environment is sensitive to both continental and oceanic forcing. Paleoenvironmental records are essential for understanding the long-term environmental evolution of the ECS and adjacent areas. However, paleo-temperature records from the ECS shelf are currently very limited. In this study, the U 37 K′ and TEX86 paleothermometers were used to reconstruct surface and subsurface temperature changes of the mud area southwest of the Cheju Island (Site F10B) in the ECS during the Holocene. The results indicate that temperature changes of F10B during the early Holocene (11.6–6.2 kyr) are associated with global climate change. During the period of 6.2–2.5 kyr, the similar variability trends of smoothing average of ΔT (the difference between surface and subsurface temperature) of Site F10B and the strength of the Kuroshio suggest that the Kuroshio influence on the site started around 6.2 kyr when the Kuroshio entered the Yellow Sea and continued to 2.5 kyr. During the late Holocene (2.5–1.45 kyr), apparent decreases of U 37 K′ sea surface temperature (SST) and ΔT imply that the direct influence of the Kuroshio was reduced while cold eddy induced by the Kuroshio gradually controlled hydrological conditions of this region around 2.5 kyr.  相似文献   

20.
The heat distributions in the upper layers of the ocean have been studied and some important low frequency oscillations (LFOs) are already found and quantified by using various characteristic factors. In this paper, the ‘heat center' of a sea area is defined with a simple method. Then the temperature data set of the upper layer of the global ocean (from surface down to 400 m, 1955-2003) is analyzed to detect the possible LFOs. Not only some zonal LFOs, which were reported early, but also some strong LFOs of the vertical and meridional heat distribution, which might imply some physical sense, are detected. It should be noted that the similar vertical oscillation pattern can be found in the Pacific Ocean, Atlantic Ocean and Indian Ocean. Results from some preliminary studies show that the vertical LFO might be caused by the solar irradiance anomalies. This study may help reveal some unknown dynamical processes in the global oceans and may also benefit other related studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号