首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy–Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4–0.45 in eccentricity and 40–45\(^\circ \) in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy–Wiltshire solution in curvilinear coordinates is also presented.  相似文献   

2.
Vinti’s potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti’s spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating \(J_2\), \(J_3\), and generally a partial \(J_4\) in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti’s solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti’s solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti’s solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the \(J_2\) through \(J_5\) terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim–Alfriend state transition matrix, which considers the \(J_2\) perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.  相似文献   

3.
We study the distribution of the sunspot-group size (area) and its dependence on the level of solar activity. We show that the fraction of small groups is not constant but decreases with the level of solar activity so that high solar activity is mainly defined by large groups. We analyze the possible influence of solar activity on the ability of a realistic observer to see and report the daily number of sunspot groups. It is shown that the relation between the number of sunspot groups as seen by different observers with different observational acuity thresholds is strongly nonlinear and cannot be approximated by the traditionally used linear scaling (\(k\)-factors). The observational acuity threshold [\(A_{\mathrm{th}}\)] is considered to quantify the quality of each observer, instead of the traditional relative \(k\)-factor. A nonlinear \(c\)-factor based on \(A_{\mathrm{th}}\) is proposed, which can be used to correct each observer to the reference conditions. The method is tested on a pair of principal solar observers, Wolf and Wolfer, and it is shown that the traditional linear correction, with the constant \(k\)-factor of 1.66 to scale Wolf to Wolfer, leads to an overestimate of solar activity around solar maxima.  相似文献   

4.
Jupiter’s satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites’ surfaces on the diurnal tidal cycle. Such variations are described by the Love numbers \(k_2\) and \(h_2\) for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags \( \phi _{k_2}\) and \( \phi _{h_2}\) of these complex numbers contain information about the rheological and dissipative states of the satellites. Starting from interior structure models and assuming a Maxwell rheology to compute the tidal deformation, we calculate the phase-lags in application to Ganymede and Europa. For both satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference \(\varDelta \phi = \phi _{k_2}- \phi _{h_2}\) can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small. In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities \({<}10^{14}\) Pa s and would indicate a highly dissipative state of the deep interior. In this case \(\varDelta \phi \) is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite. For Europa \(\varDelta \phi \) could reach values exceeding \(20^\circ \) and phase-lag measurements could help distinguish between (1) a hot dissipative silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA’s Jupiter Icy Moons Explorer (JUICE) and NASA’s Europa Multiple Flyby Mission, both targeted for the Jupiter system.  相似文献   

5.
The determination of analytical expressions which, including the main perturbative effects, allow the retrieval of the orbit elements of a probe represents an important requirement in designing science trajectories. One of these perturbations is given by the third body attraction. The case in which the perturbing body moves on a plane coincident with the equatorial plane of the primary body has been investigated in previous studies and equations able to provide the temporal evolution of the orbit elements have been determined and applied to the main moons of the Solar System. In this paper an extension of this topic has been carried out and equations which allow the determination of the orbit evolution have been analytically retrieved in the general case in which one or more perturbing bodies describe elliptical and inclined orbits with respect to the equatorial plane of the primary. Then, introducing these equations into the periodicity condition for the probe ground track, and considering the \(J_{2}\) and \(J_{4}\) effects coming from the primary body, an equation able to provide repeating ground track orbits has been determined.  相似文献   

6.
Small tidal forces in the Earth–Moon system cause detectable changes in the orbit. Tidal energy dissipation causes secular rates in the lunar mean motion n, semimajor axis a, and eccentricity e. Terrestrial dissipation causes most of the tidal change in n and a, but lunar dissipation decreases eccentricity rate. Terrestrial tidal dissipation also slows the rotation of the Earth and increases obliquity. A tidal acceleration model is used for integration of the lunar orbit. Analysis of lunar laser ranging (LLR) data provides two or three terrestrial and two lunar dissipation parameters. Additional parameters come from geophysical knowledge of terrestrial tides. When those parameters are converted to secular rates for orbit elements, one obtains dn/dt = \(-25.97\pm 0.05 ''/\)cent\(^{2}\), da/dt = 38.30 ± 0.08 mm/year, and di/dt = ?0.5 ± 0.1 \(\upmu \)as/year. Solving for two terrestrial time delays and an extra de/dt from unspecified causes gives \(\sim \) \(3\times 10^{-12}\)/year for the latter; solving for three LLR tidal time delays without the extra de/dt gives a larger phase lag of the N2 tide so that total de/dt = \((1.50 \pm 0.10)\times 10^{-11}\)/year. For total dn/dt, there is \(\le \)1 % difference between geophysical models of average tidal dissipation in oceans and solid Earth and LLR results, and most of that difference comes from diurnal tides. The geophysical model predicts that tidal deceleration of Earth rotation is \(-1316 ''\)/cent\(^{2}\) or 87.5 s/cent\(^{2}\) for UT1-AT, a 2.395 ms/cent increase in the length of day, and an obliquity rate of 9 \(\upmu \)as/year. For evolution during past times of slow recession, the eccentricity rate can be negative.  相似文献   

7.
We analyze the families of central configurations of the spatial 5-body problem with four masses equal to 1 when the fifth mass m varies from 0 to \(+\infty \). In particular we continue numerically, taking m as a parameter, the central configurations (which all are symmetric) of the restricted spatial (\(4+1\))-body problem with four equal masses and \(m=0\) to the spatial 5-body problem with equal masses (i.e. \(m=1\)), and viceversa we continue the symmetric central configurations of the spatial 5-body problem with five equal masses to the restricted (\(4+1\))-body problem with four equal masses. Additionally we continue numerically the symmetric central configurations of the spatial 5-body problem with four equal masses starting with \(m=1\) and ending in \(m=+\infty \), improving the results of Alvarez-Ramírez et al. (Discrete Contin Dyn Syst Ser S 1: 505–518, 2008). We find four bifurcation values of m where the number of central configuration changes. We note that the central configurations of all continued families varying m from 0 to \(+\infty \) are symmetric.  相似文献   

8.
We consider the three-dimensional bounded motion of a test particle around razor-thin disk configurations, by focusing on the adiabatic invariance of the vertical action associated with disk-crossing orbits. We find that it leads to an approximate third integral of motion predicting envelopes of the form \(Z(R)\propto [\varSigma (R)]^{-1/3}\), where R is the radial galactocentric coordinate, Z is the z-amplitude (vertical amplitude) of the orbit and \(\varSigma \) represents the surface mass density of the thin disk. This third integral, which was previously formulated for the case of flattened 3D configurations, is tested for a variety of trajectories in different thin-disk models.  相似文献   

9.
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill–Clohessy–Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The \(\Delta v\) requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.  相似文献   

10.
A number of studies, referring to the observed Trojan asteroids of various planets in our Solar System, or to hypothetical Trojan bodies in extrasolar planetary systems, have emphasized the importance of so-called secondary resonances in the problem of the long term stability of Trojan motions. Such resonances describe commensurabilities between the fast, synodic, and secular frequency of the Trojan body, and, possibly, additional slow frequencies produced by more than one perturbing bodies. The presence of secondary resonances sculpts the dynamical structure of the phase space. Hence, identifying their location is a relevant task for theoretical studies. In the present paper we combine the methods introduced in two recent papers (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez and Locatelli in MNRAS 453(2):2177, 2015) in order to analytically predict the location of secondary resonances in the Trojan problem. In Páez and Efthymiopoulos (2015), the motion of a Trojan body was studied in the context of the planar Elliptic Restricted Three Body or the planar Restricted Multi-Planet Problem. It was shown that the Hamiltonian admits a generic decomposition \(H=H_b+H_{sec}\). The term \(H_b\), called the basic Hamiltonian, is a model of two degrees of freedom characterizing the short-period and synodic motions of a Trojan body. Also, it yields a constant ‘proper eccentricity’ allowing to define a third secular frequency connected to the body’s perihelion precession. \(H_{sec}\) contains all remaining secular perturbations due to the primary or to additional perturbing bodies. Here, we first investigate up to what extent the decomposition \(H=H_b+H_{sec}\) provides a meaningful model. To this end, we produce numerical examples of surfaces of section under \(H_b\) and compare with those of the full model. We also discuss how secular perturbations alter the dynamics under \(H_b\). Secondly, we explore the normal form approach introduced in Páez and Locatelli (2015) in order to find an ‘averaged over the fast angle’ model derived from \(H_b\), circumventing the problem of the series’ limited convergence due to the collision singularity at the 1:1 MMR. Finally, using this averaged model, we compute semi-analytically the position of the most important secondary resonances and compare the results with those found by numerical stability maps in specific examples. We find a very good agreement between semi-analytical and numerical results in a domain whose border coincides with the transition to large-scale chaotic Trojan motions.  相似文献   

11.
The relative motion of chief and deputy satellites in close proximity with orbits of arbitrary eccentricity can be approximated by linearized time-periodic equations of motion. The linear time-invariant Hill–Clohessy–Wiltshire equations are typically derived from these equations by assuming the chief satellite is in a circular orbit. Two Lyapunov–Floquet transformations and an integral-preserving transformation are here presented which relate the linearized time-varying equations of relative motion to the Hill–Clohessy–Wiltshire equations in a one-to-one manner through time-varying coordinate transformations. These transformations allow the Hill–Clohessy–Wiltshire equations to describe the linearized relative motion for elliptic chief satellites.  相似文献   

12.
The most used method to calculate the coronal electron temperature [\(T_{\mathrm{e}} (r)\)] from a coronal density distribution [\(n_{\mathrm{e}} (r)\)] is the scale-height method (SHM). We introduce a novel method that is a generalization of a method introduced by Alfvén (Ark. Mat. Astron. Fys. 27, 1, 1941) to calculate \(T_{\mathrm{e}}(r)\) for a corona in hydrostatic equilibrium: the “HST” method. All of the methods discussed here require given electron-density distributions [\(n_{\mathrm{e}} (r)\)] which can be derived from white-light (WL) eclipse observations. The new “DYN” method determines the unique solution of \(T_{\mathrm{e}}(r)\) for which \(T_{\mathrm{e}}(r \rightarrow \infty) \rightarrow 0\) when the solar corona expands radially as realized in hydrodynamical solar-wind models. The applications of the SHM method and DYN method give comparable distributions for \(T_{\mathrm{e}}(r)\). Both have a maximum [\(T_{\max}\)] whose value ranges between 1?–?3 MK. However, the peak of temperature is located at a different altitude in both cases. Close to the Sun where the expansion velocity is subsonic (\(r < 1.3\,\mathrm{R}_{\odot}\)) the DYN method gives the same results as the HST method. The effects of the other free parameters on the DYN temperature distribution are presented in the last part of this study. Our DYN method is a new tool to evaluate the range of altitudes where the heating rate is maximum in the solar corona when the electron-density distribution is obtained from WL coronal observations.  相似文献   

13.
Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984?–?1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, \(\sim130\) CME-rays, than during SMM. Important results include: The occurrence rate of the rays is \(\sim11~\%\) of all CMEs during solar minimum, but decreases to \(\sim7~\%\) at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3?–?4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is \(\sim12~R_{\odot}\), with the longest current sheet of \(18.5~R_{\odot}\). The mean CS growth rates are \(188~\mbox{km}\,\mathrm{s}^{-1}\) at minimum and \(324~\mbox{km}\,\mathrm{s}^{-1}\) at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of \(\sim350~\mbox{km}\,\mathrm{s}^{-1}\) with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within \(\sim1\) day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic field in the aftermath of CMEs.  相似文献   

14.
Kan Liou  Chin-Chun Wu 《Solar physics》2016,291(12):3777-3792
Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23?–?24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth’s orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6?–?1995.8) and third (2006.9?–?2008.2) Ulysses’ perihelion (\({\sim}\,1.4~\mbox{AU}\)) crossings, was about the same speed, but significantly less dense (\({\sim}\,34~\%\)) and cooler (\({\sim}\,20~\%\)), and the total magnetic field was \({\sim}\,30~\%\) weaker during the third compared to the first crossing. It is also found that the SWR was \({\sim}\,50~\%\) wider in the third (\({\sim}\,68.5^{\circ}\) in heliographic latitude) than in the first (\({\sim}\,44.8^{\circ}\)) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses’ perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.  相似文献   

15.
We present the results of the study of a red nova from the observations carried out with the Russian 6-m telescope (BTA) along with other telescopes of SAO RAS and SAI MSU. To investigate the nova progenitor,we used the data from the Digital Sky Survey and amateur photos available on the Internet. In the period between April 1993 and July 2014, the brightness of the progenitor gradually increased by \(2_ \cdot ^m 2\) in the V-band. At the peak of the first outburst in mid-November 2014, the star reached an absolute visual magnitude of \(- 12_ \cdot ^m 75\) but was discovered later, in February 2015, in a repeated outburst at the magnitude of \(- 11_ \cdot ^m 65\). The amplitude of the outburst was minimum among the red novae, only \(5_ \cdot ^m 6\) in V-band. The Hα emission line and the background of a cool supergiant continuum with gradually decreasing surface temperature were observed in the spectra. Such process is typical for red novae, although the object under study showed extreme parameters: maximum luminosity, maximum outburst duration, minimum outburst amplitude, unusual shape of the light curve. This event is interpreted as a massive OB star system components’merging accompanied by formation of a common envelope and then the expansion of this envelope with minimal energy losses.  相似文献   

16.
New optimal, contractivity-preserving (CP), explicit, d-derivative, k-step Hermite–Obrechkoff series methods of order p up to \(p=20\), denoted by CP HO(dkp), with nonnegative coefficients are constructed. These methods are used to solve nonstiff first-order initial value problems \(y'=f(t,y)\), \(y(t_0)=y_0\). The upper bound \(p_u\) of order p of HO(dkp) can reach, approximately, as high as 2.4 times the number of derivatives d. The stability regions of HO(dkp) have generally a good shape and grow with decreasing \(p-d\). We, first, note that three selected CP HO methods: 4-derivative 7-step HO of order 13, denoted by HO(4, 7, 13), 5-derivative 6-step HO of order 13, denoted by HO(5, 6, 13), and 9-derivative 2-step HO of order 13, denoted by CMDAHO(13) compare favorably with Adams–Cowell of order 13, denoted by AC(13), in solving standard N-body problems over an interval of 1000 periods on the basis of the relative error of energy as a function of the CPU time. Next, the three HO methods compare positively with AC(13) in solving standard N-body problems on the basis of the growth of relative positional error and relative energy error over 10, 000 periods of integration. Finally, these three methods compare also well with P-stable methods of Cash and Franco et al. on some quasi periodic, second-order linear and nonlinear problems. The coefficients of selected HO methods are listed in the appendix.  相似文献   

17.
The present paper studies the formation flight of four nanosatellites forming a tetrahedron. The main goal of this research is to find the relative orbits of these satellites that, at least in the linear Hill–Clohessy–Wiltshire model, ensure finite relative motion and keep the volume and shape of the tetrahedron configuration. Since real motions of these satellites will differ from the linear ones, especially under the influence of the \(J_{2}\) perturbation, active control is necessary. In addition, the limited size of the satellites does not allow us to use a complex 3-axis attitude control system. In the present paper we consider the passive magnetic attitude control system and suppose that the thrust direction is always aligned with the local geomagnetic field. In order to increase mission lifetime the control algorithm that minimizes the propellant consumption and keeps the tetrahedron volume and shape is investigated.  相似文献   

18.
Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar System. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number \(k_2\) and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio \(k_2/Q\) of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.  相似文献   

19.
The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970–2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon’s extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is \(-25.90 {{}^{\prime \prime }}/\mathrm{cy}^2\), and the eccentricity is increasing by \(1.48\times 10^{-11}\) each year.  相似文献   

20.
We presents the results of our study of new spectroscopic components in the visual binaries ADS 10683 (HD 160 239=BD?154 635=HIP 86412; G6/G8V; \(V = 9\mathop .\limits^m 08\); \(B - V = 0\mathop .\limits^m 76\); 2000: 17h39m24s, ?15°46′) and ADS 11791 (HD 175039=BD?054 798=HIP 92726; G5; \(V = 8\mathop .\limits^m 78\); \(B - V = 0\mathop .\limits^m 72\); 2000: 18h53m42s, ?05°33′). ADS 10683B and ADS 11791A are single-lined spectroscopic binaries; their orbital periods are \(6\mathop .\limits^d 9171 \pm 0\mathop .\limits^d 0002\) and \(50\mathop .\limits^d 514 \pm 0\mathop .\limits^d 004\), respectively. We constructed their radial velocity curves and computed their spectroscopic orbital elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号