首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Climate change and land use conversion are global threats to biodiversity. Protected areas and biological corridors have been historically implemented as biodiversity conservation measures and suggested as tools within planning frameworks to respond to climate change. However, few applications to national protected areas systems considering climate change in tropical countries exist. Our goal is to define new priority areas for biodiversity conservation and biological corridors within an existing protected areas network. We aim at preserving samples of all biodiversity under climate change and facilitate species dispersal to reduce the vulnerability of biodiversity. The analysis was based on a three step strategy: i) protect representative samples of various levels of terrestrial biodiversity across protected area systems given future redistributions under climate change, ii) identify and protect areas with reduced climate velocities where populations could persist for relatively longer periods, and iii) ensure species dispersal between conservation areas through climatic connectivity pathways. The study was integrated into a participatory planning approach for biodiversity conservation in Costa Rica. Results showed that there should be an increase of 11 % and 5 % on new conservation areas and biological corridors respectively. Our approach integrates climate change into the design of a network of protected areas for tropical ecosystems and can be applied to other biodiversity rich areas to reduce the vulnerability of biodiversity to global warming.  相似文献   

2.
Severe impacts on biodiversity are predicted to arise from climate change. These impacts may not be adequately addressed by conventional approaches to conservation. As a result, additional management actions are now being considered. However, there is currently limited guidance to help decision makers choose which set of actions (and in what order) is most appropriate for species that are considered to be vulnerable. Here, we provide a decision framework for the full complement of actions aimed at conserving species under climate change from ongoing conservation in existing refugia through various forms of mobility enhancement to ex situ conservation outside the natural environment. We explicitly recognize that allocation of conservation resources toward particular actions may be governed by factors such as the likelihood of success, cost and likely co-benefits to non-target species in addition to perceived vulnerability of individual species. As such, we use expert judgment of probable tradeoffs in resource allocation to inform the sequential evaluation of proposed management interventions.  相似文献   

3.
Although tourism and recreation can bring economic benefits to an area, the presence of visitors may adversely impact biodiversity, particularly if they make use of sensitive environments. It is anticipated that the effects of global climate change alone may increase the vulnerability of many environments, but these effects may be magnified if warmer and drier weather encourages more visitors, or makes them more likely to participate in ecologically damaging activities. Using case study sites from the UK, this study examines how different types of beach visitors make use of coastal environments. Via a series of visitor surveys, information is elicited on the environmental preferences of a range of visitor types including walkers, bird watchers, and bathers. The use of different habitats by these visitors is also assessed via an analysis of walking routes undertaken in a Geographical Information System. From this, an assessment is made of the likely present day biodiversity impacts arising from different coastal users, and how these may change under a modified climate. This study finds that whilst higher temperatures are expected to increase visitor numbers, warmer weather may encourage greater participation in low impact activities such as bathing. The findings are discussed in the context of coastal management.  相似文献   

4.
Adapting conservation policy to the impacts of climate change has emerged as a central and unresolved challenge. In this paper, we report on the results of 21 in-depth interviews with biodiversity and climate change adaptation experts on their views of the implications of climate change for conservation policy. We find a diversity of views across a set of topics that included: changing conservation objectives, conservation triage and its criteria, increased management interventions in protected areas, the role of uncertainty in decision-making, and evolving standards of conservation success. Notably, our findings reveal active consideration among experts with some more controversial elements of policy adaptation (including the role of disturbance in facilitating species transitions, and changing standards of conservation success), despite a comparative silence on these topics in the published literature. Implications of these findings are discussed with respect to: (a) identifying future research and integration needs and (b) providing insight into the process of policy adaptation in the context of biodiversity conservation.  相似文献   

5.
Firm relocation as adaptive response to climate change and weather extremes   总被引:1,自引:0,他引:1  
Growing scientific evidence suggests that human-induced climate change will bring about large-scale environmental changes such as sea-level rise and coastal flooding, extreme weather events and agricultural disruptions. The speed and extent of these changes and the expected impacts on social and corresponding economic and industrial systems are now moving to the forefront of debates. In this paper, we argue that climate change will lead to significant disruptions to firms which might ultimately create the necessity of a geographical shift of firm and industrial activities away from regions highly affected by climate change. Such a shift might become necessary due to (1) direct disruptions through climate change impacts on firm operations, for instance through droughts, floods, or sea level rise, and due to (2) disruptions in a firm's supplier, buyer or resource base that lead to flow-on effects and adverse consequences for a firm. We propose a framework for integrating firm relocation decisions into firm adaptive responses to climate change. The framework consists of three assessment steps: the level of risk from climate change impacts at a firm's location, the feasibility of relocation, and associated costs and benefits. We apply the framework to two case examples. The first case of electricity distribution firms in Victoria/Australia illustrates how the relocation (undergrounding) of cables could decrease the vulnerability of distribution networks to bushfires and the risk of electricity-caused fires, but would require significant investments. The second case of firms in the Australian pastoral industry points to geographic diversification of pastoral land holdings as possible adaptation option, but also to constraints in form of availability of suitable properties, ties to local communities, and adverse impacts on biodiversity. Implications for adaptation research and practice are outlined.  相似文献   

6.
中国生物质能源植物种植现状及生物多样性保护   总被引:2,自引:0,他引:2       下载免费PDF全文
随着国家对可再生能源的重视和扶持,我国以麻疯树等为主的能源植物种植业呈现快速的产业化发展势头.这种生物质能源植物的产业化种植可能会对生物多样性带来影响,如对生态系统与栖息地的影响等,但这些影响还存在着诸多的不确定性和争议.从防患于未然的角度,对我国的生物质能源植物种植业发展提出了相应的建议:在生物多样性敏感地区的种植规划和项目应进行生物多样性影响评价,应尽可能使用当地物种并进行合理的配置,尽可能减少大规模单一物种的种植模式,注意原有生境的完整性和生态廊道的维持;同时,需要政府部门加大科学研究支持力度并做好监测工作,以实现我国生物质能源植物种植业和生物多样性保护的双赢.  相似文献   

7.
International conservation organisations have identified priority areas for biodiversity conservation. These global-scale prioritisations affect the distribution of funds for conservation interventions. As each organisation has a different focus, each prioritisation scheme is determined by different decision criteria and the resultant priority areas vary considerably. However, little is known about how the priority areas will respond to the impacts of climate change. In this paper, we examined the robustness of eight global-scale prioritisations to climate change under various climate predictions from seven global circulation models. We developed a novel metric of the climate stability for 803 ecoregions based on a recently introduced method to estimate the overlap of climate envelopes. The relationships between the decision criteria and the robustness of the global prioritisation schemes were statistically examined. We found that decision criteria related to level of endemism and landscape fragmentation were strongly correlated with areas predicted to be robust to a changing climate. Hence, policies that prioritise intact areas due to the likely cost efficiency, and assumptions related to the potential to mitigate the impacts of climate change, require further examination. Our findings will help determine where additional management is required to enable biodiversity to adapt to the impacts of climate change.  相似文献   

8.
Climate and land use patterns are expected to change dramatically in the coming century, raising concern about their effects on wildfire patterns and subsequent impacts to human communities. The relative influence of climate versus land use on fires and their impacts, however, remains unclear, particularly given the substantial geographical variability in fire-prone places like California. We developed a modeling framework to compare the importance of climatic and human variables for explaining fire patterns and structure loss for three diverse California landscapes, then projected future large fire and structure loss probability under two different climate (hot-dry or warm-wet) and two different land use (rural or urban residential growth) scenarios. The relative importance of climate and housing pattern varied across regions and according to fire size or whether the model was for large fires or structure loss. The differing strengths of these relationships, in addition to differences in the nature and magnitude of projected climate or land use change, dictated the extent to which large fires or structure loss were projected to change in the future. Despite this variability, housing and human infrastructure were consistently more responsible for explaining fire ignitions and structure loss probability, whereas climate, topography, and fuel variables were more important for explaining large fire patterns. For all study areas, most structure loss occurred in areas with low housing density (from 0.08 to 2.01 units/ha), and expansion of rural residential land use increased structure loss probability in the future. Regardless of future climate scenario, large fire probability was only projected to increase in the northern and interior parts of the state, whereas climate change had no projected impact on fire probability in southern California. Given the variation in fire-climate relationships and land use effects, policy and management decision-making should be customized for specific geographical regions.  相似文献   

9.
土地是人类赖以生存的重要资源,在受气候变化影响的同时其状况变化也在气候系统中起着关键作用。IPCC最新发布的气候变化与土地特别报告(SRCCL)系统反映了关于荒漠化、土地退化、可持续土地管理、粮食安全和陆地生态系统碳通量方面的最新科学认知,并探讨了如何进行更加可持续性的土地利用和管理以应对与土地相关的气候变化问题。文中从极端事件变化及其影响的角度,结合SRCCL与其他相关文献,予以分析和总结。结果表明,在全球变暖的背景下,极端天气气候事件的变化已经并将继续影响荒漠化和土地退化进程并对粮食安全造成冲击;而土地对气候系统的反馈作用,又会加剧气候变化并提高极端事件发生的概率和严重程度。面对气候变化尤其是极端事件给土地带来的巨大压力,必须坚持可持续的土地管理,通过减少包括土地和粮食系统在内的所有行业的排放,才有可能实现到21世纪末将全球平均升温控制在相对工业化前水平2℃以内的目标,以减轻气候变化对土地和粮食系统的负面影响。  相似文献   

10.
The importance of ecological management for reducing the vulnerability of biodiversity to climate change is increasingly recognized, yet frameworks to facilitate a structured approach to climate adaptation management are lacking. We developed a conceptual framework that can guide identification of climate change impacts and adaptive management options in a given region or biome. The framework focuses on potential points of early climate change impact, and organizes these along two main axes. First, it recognizes that climate change can act at a range of ecological scales. Secondly, it emphasizes that outcomes are dependent on two potentially interacting and countervailing forces: (1) changes to environmental parameters and ecological processes brought about by climate change, and (2) responses of component systems as determined by attributes of resistance and resilience. Through this structure, the framework draws together a broad range of ecological concepts, with a novel emphasis on attributes of resistance and resilience that can temper the response of species, ecosystems and landscapes to climate change. We applied the framework to the world’s largest remaining Mediterranean-climate woodland, the ‘Great Western Woodlands’ of south-western Australia. In this relatively intact region, maintaining inherent resistance and resilience by preventing anthropogenic degradation is of highest priority and lowest risk. Limited, higher risk options such as fire management, protection of refugia and translocation of adaptive genes may be justifiable under more extreme change, hence our capacity to predict the extent of change strongly impinges on such management decisions. These conclusions may contrast with similar analyses in degraded landscapes, where natural integrity is already compromised, and existing investment in restoration may facilitate experimentation with higher risk?options.  相似文献   

11.
Ecosystem changes in floodplains could be a major issue during the twenty-first century as designated habitat areas are affected by climate change and floodplain management options. As part of the RegIS project, a Regional Impact Simulator has been developed to investigate these potential changes. This paper presents the methodologies and results of biodiversity metamodels used within the Regional Impact Simulator for two regions of the UK: East Anglia and North West England. Potential impacts and adaptations to future climate and socio-economic scenarios are analysed for three habitat types in floodplains (saltmarsh, coastal grazing marsh and fluvial grazing marsh) and selected species. An important finding is that management choices, which can be linked to socio-economic futures have a greater potential impact on habitat viability than climate change. The choices society makes will therefore be key to protection and conservation of biodiversity. The analyses also show that coastal grazing marsh is the most vulnerable habitat to sea-level rise, although there is a scope for substituting losses with fluvial grazing marsh. These results indicate that these methods provide a useful approach for assessing potential biodiversity changes at the regional scale, including the effect of different policies.  相似文献   

12.
The purpose of this paper is to exemplify a means by which an integrated assessment can be made of global and regional effects on land use of climate change. This is achieved by use of data on the effects of climate change on world food prices as inputs to a regional land use allocation model.Data on world prices are drawn from a recent global study of climate change and crop yields. In a case study of England and Wales a land allocation model is used to infer changes of land use that are the product of the integrated effect of climate-induced global price changes and climate-related changes of yield in England and Wales. This combination of changed prices and yield potential is used to calculate the land use providing the highest returns for each of 155,235 1 km2 cells of land in England and Wales for a future assumed for the year 2060 (without climate change) and then for that same environment with climate change. The difference between these two is then treated as an estimated effect resulting from climate change.  相似文献   

13.
Climatic change impacts on the ecohydrology of Mediterranean watersheds   总被引:2,自引:0,他引:2  
Impact of climate change on ecohydrologic processes of Mediterranean watersheds are significant and require quick action toward improving adaptation and management of fragile system. Increase in water shortages and land use can alter the water balance and ecological health of the watershed systems. Intensification of land use, increase in water abstraction, and decline in water quality can be enhanced by changes in temperature and precipitation regimes. Ecohydrologic changes from climatic impacts alter runoff, evapotranspiration, surface storage, and soil moisture that directly affect biota and habitat of the region. This paper reviews expected impacts of climatic change on the ecohydrology of watershed systems of the Mediterranean and identifies adaptation strategies to increase the resilience of the systems. A spatial assessment of changes in temperature and precipitation estimates from a multimodel ensemble is used to identify potential climatic impacts on watershed systems. This is augmented with literature on ecohydrologic impacts in watershed systems of the region. Hydrologic implications are discussed through the lens of geographic distribution and upstream-downstream dynamics in watershed systems. Specific implications of climatic change studied are on runoff, evapotranspiration, soil moisture, lake levels, water quality, habitat, species distribution, biodiversity, and economic status of countries. It is observed that climatic change can have significant impacts on the ecohydrologic processes in the Mediterranean watersheds. Vulnerability varied depending on the geography, landscape characteristics, and human activities in a watershed. Increasing the resilience of watershed systems can be an effective strategy to adapt to climatic impacts. Several strategies are identified that can increase the resilience of the watersheds to climatic and land use change stress. Understanding the ecohydrologic processes is vital to development of effective long-term strategies to improve the resilience of watersheds. There is need for further research into ecohydrologic dynamics at multiple scales, improved resolution of climatic predictions to local scales, and implications of disruptions on regional economies.  相似文献   

14.
Climate change is expected to alter the distribution of habitats and thus the distribution of species connected with these habitats in the terrestrial Barents Sea region. It was hypothesised that wild species connected with the tundra and open-land biome may be particularly at risk as forest area expands. Fourteen species of birds were identified as useful indicators for the biodiversity dependent upon this biome. By bringing together species distribution information with the LPJ-GUESS vegetation model, and with estimates of future wild and domestic reindeer density, potential impacts on these species between the present time and 2080 were assessed. Over this period there was a net loss of open land within the current breeding range of most bird species. Grazing reindeer were modelled as increasing the amount of open land retained for nine of the tundra bird species.  相似文献   

15.
Beginning in the mid-1990s, re-eutrophication has reemerged as severe problems in Lake Erie. Controlling non-point source (NPS) nutrient pollution from cropland, especially dissolved reactive phosphorus (DRP), is the key to restore water quality in Lake Erie. To address NPS pollution, previous studies have analyzed the effectiveness of alternative spatially optimal land use and management strategies (represented as agricultural conservation practices (CPs)). However, few studies considered both strategies and have analyzed and compared their sensitivity to expected changes in temperature and precipitation due to climate change and increased greenhouse gas concentrations. In this study, we evaluated impacts of climatic change on the economic efficiency of these strategies for DRP abatement, using an integrated modeling approach that includes a watershed model, an economic valuation component, and a spatial optimization model. A series of climate projections representing relatively high greenhouse gas emission scenarios was developed for the western Lake Erie basin to drive the watershed model. We found that performance of solutions optimized for current climate was degraded significantly under projected future climate conditions. In terms of robustness of individual strategies, CPs alone were more robust to climate change than land use change alone or together with CPs, but relying on CPs alone fails to achieve a high (>?71%) DRP reduction target. A combination of CPs and land use changes was required to achieve policy goals for DRP reductions (targeted at ~?78%). Our results point to the need for future spatial optimization studies and planning to consider adaptive capacity of conservation actions under a changing climate.  相似文献   

16.
IPCC向全球正式发布了其最新的《气候变化与土地特别报告》(SRCCL),从陆气相互作用、荒漠化、土地退化、粮食安全、综合变化和协同性、可持续土地管理等方面评估气候变化与土地的相互关联。报告是在IPCC 3个工作组共同主导下,首次系统评估气候变化与陆面过程和土地利用/土地管理之间的相关作用。报告的评估结果表明,全球陆地增温幅度接近全球海陆平均值的两倍,气候变化加重了综合土地压力,并严重影响全球粮食安全,而全球很多区域的极端天气气候事件频率/强度持续增加,加重了农业生产的灾害风险和损失。采取行业间和国家间协同一致的行动,通过可持续土地管理,可以有效地适应和减缓气候变化,同时减轻土地退化、荒漠化和粮食安全的压力。  相似文献   

17.
The scientific evaluation of the wetland biodiversity conservation function is the basis of balanced wetland protection and development. Our research sought to provide references for the protection of wetland ecological environments as well as the related planning and management policies. The study established a fitting model for evaluating the biodiversity conservation function in the Liaohe Delta, northeastern China. The new model, the Wetland Biodiversity Conservation Indicator(WBCI), was with four input factors, including the vegetation coverage(VC), habitat suitability index(HI), land use and land cover(LULC) index(LI), and threat factor index(TI) of the LULC type. The values assigned to HI and TI were based on Integrated Valuation of Ecosystem Services and Tradeoffs(In VEST)habitat quality models. The weights of all the factors in WBCI were valued with the Principal Component Analysis(PCA). We evaluated the wetland biodiversity conservation function of Panjin, Liaohe Delta, China, by using the WBCI model based on Gaofen-1(GF-1) satellite data in 2018, and the result was verified with In VEST and other models. It showed that the output map was similar to that of In VEST, with the higher-quality habitat including the wetland, tidal flat, water body, and forest, as well as the lower-quality land use types including the paddy field, crop field, construction land, and land used by traffic. The wetland biodiversity conservation function was better in areas less affected by human disturbance, with very abundant species and good-quality habitat. It was poor in areas impacted by more frequent human activities such as the land cultivation, housing, and traffic, which led to the landscape fragmentation. The WBCI model provided a more accurate reflection of the bird distribution than the In VEST model. The WBCI model was able to reflect the difference in quality of each habitat grade, in contrast to the net primary productivity(NPP) method and species distribution models(SDMs). The new model was, therefore, simpler and suitable in reflecting the quality of wetland biodiversity function in the Liaohe Delta.  相似文献   

18.
Models that address the impacts of climate change on forests are reviewed at four levels of biological organization: global, regional or landscape, community, and tree. The models are compared for their ability to assess changes in fluxes of biogenic greenhouse gases, land use, patterns of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models have been used to consider more impacts than the other models. The development of landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research needing additional effort are identified: (1) linking socioeconomic and ecologic models; (2) interfacing forest models at different scales; (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes; and (4) relating information from different scales.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract DE-AC05-84OR21400.  相似文献   

19.
In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural changes in production systems and lifestyle changes. Many of such changes have long lead times, requiring up front and timely investments in infrastructure, innovative incentive structures and education. For simulating the scenarios we applied the IMAGE modelling framework, with a time horizon until 2050.Our findings confirm a large potential for more efficient resource use: our (no new policies) baseline scenario shows a global increase, between 2010 and 2050, by 80% of primary energy use, 4% of arable land and 40% of phosphorus fertilisers. These numbers are reduced to +25% (primary energy), −9% (arable land) and +9% (phosphorus) in the global resource efficiency scenario. Baseline developments and resource efficiency opportunities vary strikingly among regions, resources and sectors. Phosphorus use, for example, is expected to increase most on croplands in developing countries, whereas the largest potential for phosphorus use efficiency lies in the livestock sector and urban sewage treatment in industrialised countries. Consequently, while resource efficiency resonates well as a general notion in policy thinking, concrete policies need to be region-specific, resource-specific and sector-specific.Efficiency efforts on one resource tend to contribute to efficient use of other resources and to benefit the environment. There are also trade-offs, however, and the synergies analysed do not make problem-specific policies redundant: in 2050, the global resource efficiency scenario presents higher phosphorus use and higher use of fossil fuels than in 2010; greenhouse gas emission targets are met by half; and biodiversity loss slows down but is not halted. Moreover, part of the efficiency gains in land and phosphorus use is sacrificed when this scenario is combined with ambitious climate policy, due to the substantial resource requirements for the deployment of bio-energy—albeit much less than in a scenario without more efficient resource use.  相似文献   

20.
Increasing greenhouse gas emissions are projected to raise global average surface temperatures by 3?–4 °C within this century, dramatically increasing the extinction risk for terrestrial and freshwater species and severely disrupting ecosystems across the globe. Limiting the magnitude of warming and its devastating impacts on biodiversity will require deep emissions reductions that include the rapid, large-scale deployment of low-carbon renewable energy. Concerns about potential adverse impacts to species and ecosystems from the expansion of renewable energy development will play an important role in determining the pace and scale of emissions reductions and hence, the impact of climate change on global biodiversity. Efforts are underway to reduce uncertainty regarding wildlife impacts from renewable energy development, but such uncertainty cannot be eliminated. We argue the need to accept some and perhaps substantial risk of impacts to wildlife from renewable energy development in order to limit the far greater risks to biodiversity loss owing to climate change. We propose a path forward for better reconciling expedited renewable energy development with wildlife conservation in a warming world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号