首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On July 31th, 2016, a magnitude 5.4 earthquake struck Cangwu Country, Guangxi Zhuang Autonomous Region, it was the largest earthquake recorded by Guangxi Seismological Network since it set up. The number of people affected by the earthquake had reached 20 000, and the direct economic losses caused by the earthquake were nearly 100 million Yuan. After the earthquake, USGS provided a global earthquake catalog showing that the focal depth of Cangwu earthquake was about 24.5km. However, the result given by the Global Centroid Moment Tensor showed the focal depth of this earthquake was 15.6km. However, the result obtained by Xu Xiaofeng et al. using CAP method was 5.1km. It was clear that the focal depths of Cangwu earthquake given by different institutions were quite different from each other. However, accurate focal depth of the earthquake has important significance for exploring the tectonic mechanism near the epicenter, so it is necessary to further determine the more accurate depth of the Cangwu earthquake. In order to further accurately determine the focal depth of Cangwu earthquake, we used the global search method for travel-time residual to calculate the focal depth of this earthquake and its error range, based on the regional velocity model, which is a one-dimensional velocity model of the Xianggui tectonic belt produced by the comprehensive geophysical profile. Then, we inverted the focal mechanism of this earthquake with the CAP method. Based on this, the focal depth of Cangwu MS5.4 earthquake was further determined by the method of the Rayleigh surface wave amplitude spectrum and the sPL phase, respectively. Computed results reveal that the focal depth of this earthquake and its error range from the travel-time residual global search method is about(13±3)km, the focal depth inverted by CAP method is about 10km, the focal depth from sPL phase is about 10km, and the focal depth from Rayleigh surface wave amplitude spectrum is about 9~10km. Finally, we confirmed that the focal depth of Cangwu MS5.4 earthquake is about 10km, which indicates that this earthquake still occurred in the upper crust. In the case of low network density, the sPL phase and Rayleigh wave amplitude spectrum recorded by only 1 or 2 broadband stations could be used to obtain more accurate focal depth. The focal depth's accuracy of Cangwu MS5.4 earthquake in the USGS global earthquake catalog has yet to be improved. In the future, we should consider the error of the source parameters when using the USGS global earthquake catalog for other related research.  相似文献   

2.
利用CAP、TDMT、sPL深度震相等3种方法测定河北昌黎ML4.5地震震源深度,利用CAP方法反演得到该地震的震源机制解,拟合得到最佳震源深度为4.5 km;利用TDMT方法反演得到拟合震源深度范围为5~6 km;在震中距20~80 km范围内的台站波形数据中,CHL、BDH两个台站识别到sPL震相,基于震源机制解,计算1~16 km深度范围对应的理论波形图,与观测波形比对后得到震源深度为5 km。结果显示,3种方法的深度研究结果基本一致,结合震源尺度以及昌黎ML3.9地震CAP、sPL计算结果认为,昌黎ML4.5地震的震源深度应为4~6 km。  相似文献   

3.
北京时间2016年7月31日广西梧州市苍梧县发生M_S 5.4地震,基于海南地震台网数字波形资料,采用CAP方法反演震源机制解。结果显示,此次M_S 5.4地震震源深度较浅,最佳深度为5.1 km,其中节面Ⅰ参数为:走向340°,倾角37°,滑动角-18°;节面Ⅱ参数为:走向85°,倾角79°,滑动角-125°。初步推断苍梧M_S 5.4地震破裂面运动以走滑为主,兼有正断性质,反演参数与中国地震台网中心结果较为一致。  相似文献   

4.
单台sPL震相测定珊溪水库地震震源深度   总被引:2,自引:0,他引:2       下载免费PDF全文
汪贞杰  孙侃  朱新运 《地震学报》2019,41(6):735-742
稀疏台网下的传统走时定位难以确定中小地震的震源深度,而地震波深度震相蕴含着震源深度信息,为确定地震震源深度提供了新的途径。近震深度震相sPL和直达Pg波到时差与震源深度呈线性关系,可用以约束地震震源深度。本文以珊溪水库2014年震群事件为例,利用单台sPL震相测定了地震震源深度。结果表明:震源深度的测定结果与基于水库台网高密度台站下Pg和Sg走时定位Hyposat方法和全波形拟合CAP方法测定的震源深度高度一致,为4—6 km,与区域活动断层探测结果相符。sPL震相的优势震中距为30—50 km,区域台网范围内sPL与Pg的到时差与震源深度的线性关系相对固定,因此利用单台sPL震相即可快速获取可靠的地震震源深度,适用于稀疏台网下的中小地震震源深度的确定,且误差可控制在1—2 km范围内。   相似文献   

5.
On July 31th, 2016, a moderately strong earthquake of MS5.4 hit the Cangwu County in Guangxi Zhuang Autonomous Region. The focal depth of this earthquake is about 10 kilometers. This earthquake occurred in the junction area of Guangxi Zhuang Autonomous Region, Hunan Province and Guangdong Province. Nanning, Guangzhou, Shenzhen and other cities felt this earthquake. The Cangwu County disaster area is unique in terms of geographical position, tectonic geology, landform, economic development situation, population distribution and climate condition, etc. Based on the investigation to the earthquake hit area, and the analysis of its special natural environment, social economical conditions and humanities, seven general disaster characteristics of the Cangwu MS5.4 earthquake are summarized from the point of view of earthquake disaster emergency rescue and reconstruction. namely, the low population density in the disaster area, the single building structure type and the low-level economic development, the short duration of ground motion, the small number and low magnitude of aftershocks, no large landslide, debris flow and other secondary geological disasters caused by this earthquake, the area is prone to typhoon and other climate disasters which are likely to aggravate earthquake disaster, and the earthquake occurred in an area of weak seismicity in South China. This paper introduces the basic situation of the MS5.4 Cangwu earthquake and analyzes the seven disaster characteristics of this earthquake. In order to better respond to moderate-strong earthquake in weak seismicity regions of South China, this paper summarizes some experience and revelations about the earthquake in the MS5.4 Cangwu earthquake emergency response process, and puts forward some corresponding countermeasures of earthquake disaster reduction in weak seismicity regions in southern China. In the future work, we should pay more attention to pre-disaster prevention, and strengthen earthquake-monitoring capability. In order to reduce the casualties caused by collapse of houses, we should improve the seismic fortification standards of houses, carry out relevant researches on earthquake damage prevention measures of karst areas. And in order to carry out comprehensive disaster reduction, we should strengthen cooperation with the meteorological department, and carry out more comprehensive earthquake emergency drills.  相似文献   

6.
基于河北数字地震台网宽频带地震记录,采用CAP波形反演法,计算得到2016年6月23日河北尚义M 4.0地震的震源机制和深度,并利用sPL震相进一步测定震源深度。计算结果显示:采用CAP方法反演,得到此次地震震源深度为11 km,采用sPL震相进行测定,得到震源深度为13 km,可见采用2种方法确定的震源深度基本一致,分布范围为11—13 km,表明此次地震发生在上地壳。  相似文献   

7.
在南北地震带地区,USGS全球地震目录中存在一些震源深度大于30km的地震.这些地震的震源深度是否可靠,对于研究这一地区的孕震机制、岩石圈强度和构造演化等科学问题具有重要意义.本文以南北地震带2012年发生的5个4~5级地震为例,利用区域地震台网的波形数据,基于sPL深度震相、短周期瑞利面波以及CAP等独立方法测定了其震源深度.结果表明:sPL深度震相和CAP方法给出的震源深度比较一致,差别小于2~3km,能够得到比较可靠的震源深度;短周期瑞利面波及其与P波振幅比也确定了地震震源深度较浅的特征.本文研究结果显示:宁夏会宁4.7级、云南富民4.8级和四川会东4.7级地震的震源深度约为8~12km左右,仍为发生于上地壳的地震,USGS地震目录给出的30km甚至更深的震源深度存在明显偏差;对于四川隆昌4.6和4.9级地震,本文给出的震源深度为1~2km,属于极浅源地震,USGS地震目录给出的10km和35km的震源深度结果尚需进一步改进.  相似文献   

8.
2015年3月14日在安徽阜阳地区发生了M_S4.3地震,随后发生3月23日M_s3.6余震.主震造成2人死亡13人受伤.房屋倒塌155间,受损1万多间.主震震级不大,而造成的灾害巨大.本文使用CAP方法反演了两次地震的震源机制解和震源深度,结果显示两次地震的震源机制解和深度一致.主震的机制解节面Ⅰ走向110°,倾角75°,滑动角—10°;节面Ⅱ走向202°,倾角80°,滑动角—164°;矩震级M_w4.3,余震矩震级M_w3.7,反演最佳深度均为3 km.最佳深度时波形拟合相关系数较高,表明反演结果是可靠的.使用sPn和sPL深度震相进一步分析了两次地震的震源深度.结果显示,选取的7个台站的sPn震相与Pn震相的平均到时差为1 s,对应的震源深度为3 km.震中距为36 km的利辛台的sPL震相与Pg震相到时差约为1.1 s,对应震源深度约3~4 km之间.两种深度震相分析的震源深度与CAP方法的结果一致,表明本文给出的阜阳地震震源深度为3 km左右基本是可靠的.本次地震造成较大灾害的原因很可能与地震震源较浅有关.阜阳地区地壳结构相对稳定,地质构造演化形成3 km厚的沉积层,本次地震可能是区域应力作用下发生在沉积层里的一次地震.  相似文献   

9.
2017年9月4日河北临城地区发生ML 4.4地震,为得到准确的震源深度,根据sPL震相基本特征,对震中距20-70 km范围内8个地震台站波形数据进行处理,在其中4个地震台观测到明显的sPL震相,利用频率-波数(F-K)方法,计算其理论波形图,与处理后的观测波形拟合对比,得到震源深度范围,与TDMT-INV方法、PTD方法及河北测震台网编目等结果基本一致,表明利用sPL震相测定河北临城ML 4.4地震震源深度可靠,其深度范围为10-11 km。  相似文献   

10.
Based on the phase report of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence ML ≥ 1.0 was relocated by the HypoDD method. The results show that the aftershocks were distributed along NE and NW direction. The aftershocks were in the depths of 5~15km. In addition, by using the digital waveforms of Xinjiang Seismic Network, the best double-couple focal mechanism of the main shock and some aftershocks of MS ≥ 3.8 were determined by the CAP method. Based on the above studies, the source depth, focal mechanism and aftershock distribution of the Hutubi MS6.2 earthquake were analyzed and the seismogenic structure was discussed. The nodal plane parameters of the best double-couple focal mechanism are strike 144°, dip 26°, rake 118°, and strike 293°, dip 67°, rake 77°, respectively. The moment magnitude MW is about 5.9, with centroid depth of 15.2km. These show that the main shock was a thrust type. Most focal mechanism solutions of the aftershocks were shown as a thrust type, which are similar to the main shock. It is speculated that the possible seismogenic fault of this earthquake is the Huorgosi-Manas-Tugulu Fault.  相似文献   

11.
利用近震深度震相sPL的基本特征和九江地震台的波形资料,对2005年11月26日九江—瑞昌MS5.7地震序列ML2.0地震进行了sPL震相分析,得到了该地震序列较为可靠的震源深度分布,并与CAP波形反演、双差定位、sPn震相、Hyposat等方法定位的结果进行了对比。结果表明,sPL震相测定的近震震源深度较为可信,该地震序列的震源深度分布在9~11km范围内。  相似文献   

12.
2017年6月3日阿拉善左旗5.0级地震震源深度测定   总被引:1,自引:1,他引:0  
2017年6月3日18时11分内蒙古阿拉善左旗(37.99° N,103.56° E)发生5.0级地震,利用近震深度震相sPL测定法、CAP波形反演法、sPn与Pn震相走时差法,进行震源深度精确测定。研究结果表明,3种方法测得的该地震震源深度基本一致,分布范围为8.5—11 km,表明该地震发生在上地壳。  相似文献   

13.
2012年6月30日新疆维吾尔自治区新源-和静县交界发生MS6.6地震,该地震是2010年青海玉树7.1级地震和2013年4月20日四川芦山7.0级地震之间中国大陆发生的最大的地震.本文基于新疆数字地震台网记录的此次地震序列震相资料,分别用绝对和相对定位方法联合对其进行重新定位,重新定位后余震展布为NW向,主震位置为43.429°N,84.755°E,深度为21.8 km.基于新疆地震台网记录6.6级地震波形数据,本文用CAP方法反演了震源机制解和震源深度.结果显示:MS6.6地震震源机制解:节面Ⅰ走向39°,倾角46°,滑动角12°,节面Ⅱ走向301°,倾角81°,滑动角135°;震源深度为21 km,与利用地震震相到时确定的主震震源深度基本一致.主震震源机制解的节面Ⅱ与伊犁盆地北缘断裂走向和倾角基本一致,综合精确定位余震展布和伊犁盆地北缘断裂性质分析认为,新源-和静MS6.6地震发震构造是伊犁盆地北缘断裂,震源深度为21 km左右,是一个高角的内陆倾滑地震.  相似文献   

14.
基于江苏地区测震台网记录,采用CAP方法反演了2016年10月20日射阳MS4.4地震的震源机制解和震源深度;利用HypoDD方法对射阳地震序列中ML≥1.5地震进行了重新定位.结果显示:射阳MS4.4地震的震源机制参数分别为节面Ⅰ:走向304°,倾角53°,滑动角0°;节面Ⅱ:走向214°,倾角90°,滑动角143°,震源深度约为14 km.双差定位结果显示:此次射阳地震序列分布于洪泽—沟墩断裂与盐城—南洋岸断裂之间,在水平空间内,其震中分布的优势方向为NW60°,由SE向NW迁移; 地震序列深度分布在6—23 km范围内.根据所反演的震源机制参数和地震序列精定位结果,本文推测射阳MS4.4地震的断层面解为震源机制解的节面Ⅰ, 该地震可能是在区域背景应力场的作用下,沿NW向剪切破裂产生的左旋走滑地震事件.   相似文献   

15.
sPL,一个近距离确定震源深度的震相   总被引:27,自引:7,他引:20       下载免费PDF全文
实际地震波形观测表明,对于大陆结构相对简单的地壳中的地震而言,有一震相出现在P 波和S波之间.一般在30~50 km附近发育得较好,其能量主要集中在径向分量,而垂向分量的振幅相对径向要小,切向分量上的振幅很弱,且波形以低频为主,通常没有P波尖锐.在利用FK方法计算合成地震图的基础上,发现该震相是由S波入射到自由地表形成水平传播的P波(文献称为surface P wave,自由地表P波)或者包括S波入射到地表后形成的多次P波或其散射震相.由于该震相是由S波和P波之间耦合而形成,本文将其定义为sPL(s coupled into P) 震相.理论波形研究表明,sPL相对直达P波的到时差对震中距离不敏感,而随着震源深度的增加几乎呈线性增加,因此可以很好的约束震源深度.本文以2005年江西九江地震为例,证实了sPL确定震源深度的可行性和可靠性.在观测到sPL震相的情况下,离震源50 km以内的一个三分量地震台站的波形就可以帮助获得可靠的震源深度,而不需要精确的震中距离.由于sPL震相出现距离较近,对于较小(三级以上)的地震也可以应用,因此在稀疏台网布局情形下sPL对于确定中小地震深度应该具有很好的应用意义.  相似文献   

16.
Based on the mobile gravity observation data in 2014-2016 in Guangxi and its adjacent areas, this paper systematically analyzed the changes of regional gravity field and its relation to the MS5.4 Cangwu, Guangxi earthquake on July 31, 2016, and combined with GPS observation data and seismic geological survey results, discussed the temporal and spatial distribution characteristics of the changes of regional gravity field and its mechanism. The results show that:(1) Before and after the MS5.4 Cangwu earthquake, the gravity anomaly changes near the earthquake area were closely related to the major faults in space, which reflects the crustal deformation and tectonic activities that caused the surface gravity change along the seismogenic fault in the period of 2014-2016; (2) The gravity changes near the epicenter before and after the MS5.4 Cangwu earthquake showed an evolution process in which the positive gravity anomaly zone changed to the negative gravity anomaly zone, a gravity gradient belt appeared along NNE direction and the earthquake occurred in its reverse change process; (3) The epicenter of the MS5.4 Cangwu earthquake located both near the gravity gradient belt and in the zero transition zone of the surface strain gradient and the edge of the high maximum shear strain rate area, the observational fact further proved that the dynamic image of gravitational field and deformation field have important instruction significance to the location prediction of strong earthquakes; (4) in recent years, the gravity dynamic change in northwestern Guangxi presented a four-quadrant distribution pattern, and there is the risk of generating earthquake of magnitude about 5 in the center of the quadrants.  相似文献   

17.
运用CAP方法反演2018年9月4日新疆伽师MS5.5地震及MS≥3.0余震的震源机制解,计算得出伽师MS5.5地震的震源机制解为:节面Ⅰ:走向48°,倾角83°,滑动角3°;节面Ⅱ:走向318°,倾角87°,滑动角173°;主压应力P轴方位角为3°,倾角为3°,主张应力T轴方位角273°,倾角为7°;矩震级为MW5.3。使用双差定位法对主震及余震共计129个MS≥1.5地震进行重新定位,并对震源机制解和重定位结果进行综合分析,发现此次重定位地震结果与CAP方法反演结果的展布方向一致,地震集中分布在NEE向,因此认为节面I是此次地震的主破裂面;重定位后NS、EW和UD方向的平均相对误差分别为0.25、0.23及0.09 km,平均走时残差为0.026 s,震源深度集中分布在5~15 km。此次地震及其余震附近地表无明显的断层出露,所以初步判定2018年新疆伽师MS5.5地震可能受控于柯坪断裂带附近的隐伏断裂。  相似文献   

18.
A MS6.0 earthquake with shallow focal depth of 16km struck Changning County, Yibin City, Sichuan Province at 22:55: 43(Beijing Time)on 17 June 2019. Although the magnitude of the earthquake is moderate, it caused heavy casualties and property losses to Changning County and its surrounding areas. In the following week, a series of aftershocks with MS≥4.0 occurred in the epicentral area successively. In order to better understand and analyze the seismotectonic structure and generation mechanism of these earthquakes, in this paper, absolute earthquake location by HYPOINVERSE 2000 method is conducted to relocate the main shock of MS6.0 in Changning using the seismic phase observation data provided by Sichuan Earthquake Administration, and focal mechanism solutions for Changning MS6.0 main shock and MS≥4.0 aftershocks are inferred using the gCAP method with the local and regional broadband station waveforms recorded by the regional seismic networks of Sichuan Province, Yunnan Province, Chongqing Municipality, and Guizhou Province. The absolute relocation results show that the epicenter of the main shock is located at 28.35°N, 104.88°E, and it occurred at an unusual shallow depth about only 6.98km, which could be one of the most significant reasons for the heavier damage in the Changning and adjoining areas. The focal plane solution of the Changning MS6.0 earthquake indicates that the main shock occurred at a thrust fault with a left-lateral strike-slip component. The full moment tensor solution provided by gCAP shows that it contains a certain percentage of non-double couple components. After the occurrence of the main shock, a series of medium and strong aftershocks with MS≥4.0 occurred continuously along the northwestern direction, the fault plane solutions for those aftershocks show mostly strike-slip and thrust fault-type. It is found that the mode of focal mechanism has an obvious characteristic of segmentation in space, which reflects the complexity of the dislocation process of the seismogenic fault. It also shows that the Changning earthquake sequences occurred in the shallow part of the upper crust. Combining with the results from the seismic sounding profile in Changning anticline, which is the main structure in the focal area, this study finds that the existence of several steep secondary faults in the core of Changning anticline is an important reason for the diversity of focal mechanism of aftershock sequences. The characteristics of regional stress field is estimated using the STRESSINVERSE method by the information of focal mechanism solutions from our study, and the results show that the Changning area is subject to a NEE oriented maximum principal stress field with a very shallow dipping and near-vertical minimum principal stress, which is not associated with the results derived from other stress indicators. Compared with the direction of the maximum principal compressive stress axis in the whole region, the direction of the stress field in the focal area rotates from the NWW direction to the NEE direction. The Changning MS6.0 earthquake locates in the area with complex geological structure, where there are a large number of small staggered fault zones with unstable geological structure. Combining with the direction of aftershocks distribution in Changning area, we infer that the Changning MS6.0 earthquake is generated by rupturing of the pre-existing fault in the Changning anticline under the action of the overall large stress field, and the seismogenic fault is a high dip-angle thrust fault with left-lateral strike-slip component, trending NW.  相似文献   

19.
利用双差定位方法对西藏比如MS6.1地震序列141次ML≥2.0地震进行重新定位,采用CAP波形反演方法获得主震的震源机制解,并运用最小空间旋转角方法比较不同机构发布的震源机制解的差异。重新定位后主震震中位置为(31.924°N,92.824°E),靠近余震区中心,震源深度为12.8 km;余震分布沿NE向展布,长约18 km。沿NE向深度剖面结果显示,在主震右上方存在5 km×10 km的近椭圆形地震破裂空区。主震的震源机制解为正断兼走滑型,最佳矩心深度为9.3 km,矩震级为5.98。结合重新定位后余震分布、主震与历史地震震源机制解及地质构造背景等分析,认为具有左旋运动性质的安多南缘断裂可能是该次地震序列的主要发震构造。  相似文献   

20.
Based on the digital waveforms of Xinjiang Seismic Network, the Hutubi MS6.2 earthquake sequence (ML ≥ 1.0) was relocated precisely by HypoDD.The best double-couple focal mechanisms of the main shock and aftershocks of ML ≥ 4.0 were determined by the CAP method. We analyzed the characteristics of spatial distribution, focal mechanisms and the seismogenic structure of earthquake sequence. The results show that the main shock is located at 43.775 9°N, 86.363 4°E; the depth of the initial rupture and centriod is about 15.388km and 17km. The earthquake sequence extends unilaterally along NWW direction with an extension length of about 15km and a depth ranging 5~15km. The characteristics of the depth profiles show that the seismogenic fault plane dips northward and the faulting is dominated by thrusting. The nodal planes parameters of the best double-couple focal mechanisms are:strike 292°, dip 62° and rake 80° for nodal plane I, and strike 132°, dip 30° and rake 108° for nodal plane Ⅱ, indicating that the main shock is of thrust faulting. The dip of nodal planeⅠis consistent with the dip of the depth profile, which is inferred to be the fault plane of seismogenic fault of this earthquake. According to the comprehensive analysis of the relocation results, the focal mechanism and geological structure in the source region, it is preliminarily inferred that the seismogenic structure of the Hutubi MS6.2 earthquake may be a backthrust on the deeper concealed thrust slope at the south of Qigu anticline. The earthquake is a "folding" earthquake taking place under the stress field of Tianshan expanding towards the Junggar Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号