首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hexi Corridor is located at the northeastern margin of the Tibetan plateau. Series of late Quaternary active faults are developed in this area. Numerous strong earthquakes occurred in history and nowadays. Jinta Nanshan fault is one of the boundary faults between the Qinghai-Tibet block and the Alxa block. The fault starts from the northwest of Wutongdun in the west, passes through Changshan, Yuanyangchi reservoir, Dakouzi, and ends in the east of Hongdun. Because the Jinta Nanshan fault is a new active fault in this region, it is important to ascertain its paleoearthquakes since late Pleistocene for the earthquake risk study. Previous studies were carried out on the western part, such as field geomorphic investigation and trench excavation, which shows strong activity in Holocene on the western segment of Jinta Nanshan fault. On the basis of the above research, in this paper, we carried out satellite image interpretation, detailed investigation of faulted landforms and differential GPS survey for the whole fault. Focusing on the middle-eastern part, we studied paleoearthquakes through trench exploration on the Holocene alluvial fan and optical luminescence dating. The main results are as follows:Early Pleistocene to late Pleistocene alluvial strata are widely developed along the fault and Holocene sediment is only about tens of centimeters thick. The Jinta Nanshan fault shows long-lasting activity since late Quaternary and reveals tens of centimeters of the lowest scarp which illustrates new strong activity on the middle-east segment of this fault. Since late Pleistocene, 4 paleoearthquakes happened respectively before(15.16±1.29) ka, before(9.9±0.5) ka, about 6ka and after(3.5±0.4) ka, revealed by 4 trenches, of which 2 are laid on relatively thicker Holocene alluvial fan. Two events occurred since middle Holocene, and both ruptured the whole fault.  相似文献   

2.
在青藏高原东北隅发育一系列向北东凸出的弧形断裂带.其中最主要的三条断裂带从北到南分别为牛首山-罗山断裂带、香山-天景山断裂带和天祝一海原断裂带。香山-天景山断裂带从上世新以来一直有过活动,并在1709年发生了中卫南7t/2级地震。近期,宁夏地震局在孟家湾村南开挖了一个探槽.揭露出石炭纪的煤系地层逆冲于晚更新世风成沙之上.根据风成沙光释光测年结果表明。此探槽显示的断裂活动时代在距今约26.14±1.08ka.极有可能为22.09±0.4ka与26.14±1.08ka之间.  相似文献   

3.
前人在山西交城断裂带上开挖过多个探槽,揭露出全新世3次古地震事件,但其研究结果尚不能确定该断裂带全新世活动段的北部边界.近期在该断裂带北端和中段又开挖了3个大型探槽,其中在阳曲县泥屯盆地西界开挖的龙王沟探槽,是一个由多个探槽组合成的大探槽,该探槽揭示的地层断错信息,将交城断裂带全新世活动的范围向北延伸了20km.另外2个大型探槽分别为交城断裂带中段瓦窑沟东侧台地前缘的瓦窑探槽与市儿口沟西侧T1阶地前缘的新民探槽.这3个大探槽均揭示出全新世中期(14C测年值为距今5 ~ 6ka)的垆土和淤泥层,以及多组平行分布的断面,所揭示的全新世3次古地震事件具有断错事件活动的同步性,可与前人探槽揭示的全新世断层活动事件相对比.3次断错活动时间分别距今3.06 ~3.53ka、5.32ka左右或6.14ka左右、8.36ka左右;3次事件的时间间隔分别为2.02 ~ 2.84ka和2.22 ~ 3.04ka.这些断错事件的同震垂直位移为1.5~4.7m,显示了7级以上地表破裂型的强震活动.最后讨论了探槽中14C测年样品的影响因素.  相似文献   

4.
The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.  相似文献   

5.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

6.
The Langshan range-front fault (LRF)is a Holocene active normal fault that bounds the Langshan Mountain and Hetao Basin at the northwest corner of the Ordos Plateau. Paleoseismic trenching research at three sites, Dongshen Village trench (TC1), Qingshan trench (TC2)and Wulanhashao trench (TC3)from north to south was performed in this study to reveal the seismic hazard risk in Hetao Basin. The paleoevents ED1, ED2, ED3 from TC1 can be constrained to have occurred (6±1.3)ka, (9.6±2)ka and (19.7±4.2)ka respectively, while the paleoevent EQ1 from TC2 occurred about (6.7±0.1)ka and the paleoevents EW1, EW2, EW3 at TC3 took place about (2.3±0.4)ka, (6±1)ka and before 7ka respectively. In combination with paleoseismic results of previous researchers, the Holocene earthquake sequence of the LRF could be established as 2.3~2.43ka BP (E1), 4.41~3.06ka BP (E2), 6.71~6.8ka BP (E3), 7.6~9.81ka BP (E4), and (19.7±4.2)ka BP (E5). Although the possibility of missing events cannot totally be ruled out, based on the analysis on faulted geomorphology at Wulanhashao site, we argue the paleoearthquake history of the LRF during Holocene may be complete with an average recurrent interval about 2500 yrs. The apparent displacements associated with events E1, E3 and E4 are significantly larger than that of event, E2, that suggests that they might be great events with magnitudes 7.5 to even over 8 that ruptured the entire LRF, while the event E2 may be a smaller event that only ruptured a segment of the fault. The magnitude of event E2 might be about M7. This poses a significant seismic hazard to the area of the Linhe depression in the western Hetao graben region. With the further limitation of previous radiocarbon dating result near our trench site at Wulanhashao, the slip rate at Wulanhashao should be not smaller than, but close to 0.66mm/a since 15ka BP. And the slip rate at Qingshan site is supposed to be about 1.4~1.6mm/a since 6.8ka BP. Both our combined most recent paleoseismic cognition and current tectonic geomorphologic research results supports to reveal that the Langshan range-front fault now is an unsegmented fault, preferring to rupture the whole fault in a surface-rupture event. Considering the most recent event E1 and fault slip rate obtained above, the accumulated strain on the LRF could be estimated as about 1.52~3.94m. Given the ~2500a recurrent interval, we argue that the elapsed time since last major quake, E1, is approaching or even over the recurrence, and the seismic risk for another major quake is imminent, at least cannot be ignored.  相似文献   

7.
Surface rupture zone of historical earthquake is the most intuitive geomorphological response to fault activity. The rupture pattern, coseismic displacement and its geometric spatial distribution are important for determining segmentation and long-term movement behaviors of active fault. In the Barkol Basin of Xinjiang, according to the comprehensive result from remote sensing image interpretation, field surgery, high-resolution small unmanned aerial vehicles photography, terrain deformation measurements and trench excavation on geomorphological points, not only the new surface ruptures of the two M7 1/2 historical earthquakes in Barkol in 1842 and 1914 were found and defined between Xiongkuer and the southwest of Barkol County in southwestern part of the basin, but also the latest deformation evidence of the EW fold-up faults in the eastern part of the Basin was identified. Combined with the ancient document analysis of the two historical earthquakes, we finally conclude that the surface rupture zone in the western segment on the southern margin of the Barkol Basin is the seismogenic structure of the M7 1/2 earthquake in 1842. The surface rupture zone is mainly characterized by left-lateral strike-slip, roughly with en echelon arrangement spreading from Xiongkuer to the south of Barkol County. The length of the surface rupture zone determined by field investigation is at least about 65km, and the maximum horizontal displacement appears around the Xiongkuer Village. At the same time, the surface rupture zone gradually shows more significant thrust extrusion from west to east, and has a tendency of extension towards the central of the Barkol Basin. The average observed displacement of the entire surface rupture obtained by counting the coseismic offsets of multiple faulted gullies is(4.1±1.0)m, with the coseismic characteristic displacement of ~4m. The epicenter position should appear at the place with the largest horizontal dislocation amount near Xiongkuer Village. In addition, the length of the fold-blind fault zone in the vicinity of the Kuisu Town and the eastward extension to the Yanchi Township of the Yiwu Basin, which was discovered in the center of the Barkol Basin, is about 90km. The folded blind fault causes significant fold deformation in the latest sedimentary strata such as floodplain, and in addition, as shown on many outcrop sections, the bending-moment faults associated with the coseismic fold deformation have ruptured the surface. Therefore, the location of the epicenter should be located at the maximum fold deformation, which is near the Kuisu Town. The new research results not only further improve the understanding of the epicenter location and seismogenic faults of the two historical earthquakes in the Barkol Basin, but also provide an important reference for analyzing regional seismic hazards.  相似文献   

8.
The Fodongmiao-Hongyazi Fault is a Holocene active thrust fault, belonging to the middle segment of northern Qilianshan overthrust fault zone, located in the northeastern edge of the Tibet plateau. The Hongyapu M7(1/4) earthquake in 1609 AD occurred on it. A few paleo-seismology studies were carried out on this fault zone. It was considered that four paleoearthquakes occurred on the Fodongmiao-Hongyazi Fault between(6.3±0.6) ka BP and(7.4±0.4) ka BP, in(4.3±0.3) ka BP, in(2.1±0.1) ka BP and in 1609 AD. The occurrences of the earthquakes suggested the quasi-periodic characteristic with a quasi-periodic recurrence interval between 1 600~2 500a(Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993; Liu et al., 2014). There was no direct evidence for the Hongyapu M7(1/4) earthquake in 1609 AD from trench research in the previous studies. Great uncertainty exists because of the small number of the chronology data, as a few TL and OSL measurement data and several14 C data, and it was insufficient to deduce the exact recurrence interval for the paleoearthquakes. Five trenches were excavated and cleared up respectively in the eastern segment, middle segment and western segment along the Fodongmiao-Hongyazi Fault. After detail study on the trench profiles, the sedimentary characteristics, sequence relationship of the stratigraphical units, and fault-cuts in different stratigraphical units were revealed in these five trenches. Four paleoearthquakes in Holocene were distinguished from the five trenches, and geology evidences of the Hongyapu M7(1/4) earthquake in 1609 AD were also found. More accurate constraint of the occurring time of the paleo-earthquakes since Holocene on the Fodongmiao-Hongyazi Fault is provided by the progressive constraining method(Mao and Zhang, 1995), according to amounts of 14 C measurement data and OLS measurement data of the chronology samples from different stratigraphical units in the trenches. The first paleoevent, E4 occurred 10.6ka BP. The next event, E3 occurred about 7.1ka BP. The E2 occurred about 3.4ka BP. The last event, E1 is the Hongyapu M7(1/4) earthquake in 1609 AD. Abounds of proofs for the occurrences of the events of E1, E2 and E3 were found in the trench Tc1, trench Tc2, trench Tc4 and trench Tc3, located in the eastern, middle and western segments of the Fodongmiao-Hongyazi Fault accordingly. It's considered that the events E1, E2 and E3 may cause whole segment rupturing according to the proofs for these three events found together in individual trenches. The event E4 was only found in the trench Tc5 profile in the west of the Xiaoquan village in the eastern segment of the Fodongmiao-Hongyazi Fault. The earthquake rupture characteristics of this event can't be revealed before more detailed subsequent research. The time intervals among the four paleoearthquakes are ca 3.5ka, ca 3.7ka, and ca 3.0ka. The four events are characterized by ca 3.4ka quasi-periodic recurrence interval.  相似文献   

9.
通过断错地貌调查和探槽开挖,获得了临汾盆地西界罗云山山前断裂带龙祠-峪口段的最新活动信息:该段山前洪积扇后缘断断续续存在高2.5m、5.2m、8m左右的地表地貌陡坎;附近冲沟的Ⅰ级阶地热释光测年为距今7500a左右;在NW向的席坊沟内存在拔沟3.5m、8m、18m左右的3级阶地,与地貌陡坎有对应关系;席坊沟探槽揭示罗云...  相似文献   

10.
Study of historical earthquake is one of the important methods to understand the seismic activities and analyze the seismogenic faults. On the May 25th, 1568 AD, a destructive earthquake occurred to the northeast of the present-day city of Xi'an, Shaanxi Province. Because this earthquake happened shortly after the 1556 M8 earthquake and was regarded as an aftershock, it has received little attention in previous studies. Previous earthquake catalogue agreed in assigning a magnitude 6 3/4 to this earthquake but had different epicentral locations and seismic intensity, and the seismogenic structure remains ambiguous. Based on textual research of historical earthquake and field investigation, the Jingyang County, Gaoling County, and Xianning County, were the worst hit area by the earthquake, and the areas, including Yongle Town, Gaozhuang Town at southeastern Jingyang County to Gaoling County and its southeastern present-day Jijia and Zhangbu, should be the mesoseismal area of this earthquake. The epicenter intensity of this earthquake is Ⅸ+(9~10 degrees), and the magnitude is estimated to be 7. The isoseismal lines were drawn to exhibit the various intensities of the areas damaged during the event, with its major axis directed NWW. Intensities reached Ⅸ+ in the zone extending west-northwest parallel to the Weinan-Jingyang Fault. This fault, characterized by a normal fault that developed during the Cenozoic extensional history of the Weihe Basin, dipping to the north at an angle of 60°~80°, is one part of the southern boundary faults in Weihe graben. There are geomorphological and geological evidences of recent activity of the fault during (180±30)a BP to (1 600±30)a BP. At T1-T2 fluvial terraces on the north bank of Weihe River, the scarps were faulted during Ming Dynasty, and sandy soil liquefaction, dense structural tensional fissures and faulted strata are noted in stratigraphic profiles and trenches. Thus, we suggest that this fault can reliably be regarded as being active during Holocene, and re-name the earthquake as the Shaanxi Gaoling earthquake.  相似文献   

11.
The 2008 Wenchuan earthquake occurred along the Longmen Shan fault zone, only five years later, another M7 Lushan earthquake struck the southern segment where its seismic risk has been highly focused by multiple geoscientists since this event. Through geological investigations and paleoseismic trenching, we suggest that the segment along the Shuangshi-Dachuan Fault at south of the seismogenic structure of the Lushan earthquake is active during Holocene. Along the fault, some discontinuous fault trough valleys developed and the fault dislocated the late Quaternary strata as the trench exposed. Based on analysis of historical records of earthquakes, we suggest that the epicenter of the 1327 Tianquan earthquake should be located near Tianquan and associated with the Shuangshi-Dachuan Fault. Furthermore, we compared the ranges of felt earthquakes(the 2013 M7 Lushan earthquake and the 1970 MS6.2 Dayi earthquake)and suggest that the magnitude of the 1327 Tianquan earthquake is more possible between 6½ and 7. The southern segment of the Longmen Shan fault zone behaves as a thrust fault system consisting of several sub-paralleled faults and its deep structure shows multiple layers of decollement, which might disperse strain accumulation effectively and make the thrust system propagate forward into the foreland basin, creating a new decollement on a gypsum-salt bed. The soft bed is thick and does not facilitate to constrain fault deformation and accumulate strain, which produces a weak surface tectonic expression and seismic activity along the southern segment, this is quite different from that of the middle and northern segments of the Longmen Shan fault zone.  相似文献   

12.
刘兴旺  袁道阳  邵延秀  张波  柳煜 《地震》2019,39(3):1-10
玉门—北大河断裂是酒西盆地南侧的一条重要的活动断裂, 断裂西起青草湾, 向东经老玉门市、 青头山、 大红泉, 止于北大河以东骨头泉一带, 长约80 km, 走向北西西, 倾向南, 倾角20°~60°。 玉门—北大河断裂为一条全新世活动的逆冲断裂, 断裂东段保留了地震破裂带遗迹, 通过野外断错地貌调查和探槽开挖, 揭示该破裂带形成于距今1.7±0.3 ka, 此前断裂在4.1±0.3~5.4±0.3 ka及8.4±1.0 ka还有过2次古地震事件, 利用经验公式和已有震例估算, 每次地震震级约为M7。  相似文献   

13.
福州盆地活动断裂的探槽研究   总被引:4,自引:1,他引:4       下载免费PDF全文
在前人对福州盆地及其周缘活动断裂 1/ 1万填图研究的基础上 ,通过室内航卫片判读、野外详细调查等方法 ,经过详细论证 ,在福州盆地及周缘 6条活动断裂上选择了 11个认为可能是断层通过的位置 ,进行了探槽开挖。大部分探槽只揭露到了基岩中的断层 ,有些探槽在开挖深度内既没有揭露到基岩 ,在第四系中也没有揭露到断层。对于没有揭露到断层的探槽 ,认为断层没有错断开挖深度内的第四纪地层 ,以探槽最底部的地层年代作为断层最新活动时代的上限。有些探槽揭露到了基岩中的断层 ,这些断层向上没有错断第四系 ,就以上覆第四系底部的时代作为断层最新活动时代的上限。只有在沿桐口 -洪山桥断裂开挖的探槽中 ,揭露出 2条断层 ,它们向上都错断了相同层位的第四纪地层 ,并被更新的第四系所覆盖。根据测年结果 ,这些断裂不是全新世活动断裂 ,其中 ,闽侯 -南屿断裂可能为晚更新世活动断裂 ,其它断裂晚更新世以来都已不活动  相似文献   

14.
The Youshashan Fault lies in the south flank of Yingxiongling anticline, southwestern margin of Qaidam Basin. The Yingxiongling anticline is one of the most active neotectonics, situated at the front of folds expanding southward in the Qaidam Basin. Research on the paleoseimology and Late Quaternary slip rate of this fault is important for hazard assessment and understanding tectonic deformation in this area. We excavated a 27-m-long trench across the Youshashan fault where a pressure bridge formed on the Holocene alluvial fans, measured a profile of the fold scarp created by the fault west of the Youshashan mountain, and collected several samples of finer sands for luminescence dating. Analysis of these data shows that(1) The Youshashan Fault is a Holocene active feature. The fold scarp in the basin indicates that this fault has been active along a same surface trace since at least mid-late Pleistocene. At least two paleoseismic events are revealed by trenching, both occurred in Holocene. The latest event Ⅱ in the trench happened after 500a. The current information fails to confidently support that it is the 1977 Mangya M6.4 earthquake, but cannot excludes the possibility of it is related to this earthquake. The other event Ⅰ occurred about between 1 000a to 4 000a. Erosion after the event Ⅰ prevents us to constrain the event age and to identify more events further. (2)The vertical slip rate of the Youshashan fault is about(0.38±0.06)mm/a since mid-late Pleistocene. Comparing with relative speeds of GPS sites across the Yingxiongling anticline suggests that the Youshashan fault is an important structure which is accommodating crustal shortening in this region.  相似文献   

15.
On October 17, 2014, a MS6.6 earthquake occurred in Jinggu, Yunnan. The epicenter was located in the western branch of Wuliang Mountain, the northwest extension line of Puwen Fault. There are 2 faults in the surrounding area, one is a sinistral strike-slip and the other is the dextral. Two faults have mutual intersection with conjugate joints property to form a checkerboard faulting structure. The structure of the area of the focal region is complex. The present-day tectonic movement is strong, and the aftershock distribution indicates the faulting surface trending NNW. There is no obvious surface rupture related to the known fault in the epicenter, and there is a certain distance from the surface of the Puwen fault zone. Regional seismic activity is strong. In 1941, there were two over magnitude 7.0 earthquakes in the south of the epicenter of Jinggu County and Mengzhe Town. In 1988, two mainshock-aftershock type earthquakes occurred in Canglan-Gengma Counties, the principal stress axes of the whole seismic area is in the direction of NNE. Geological method can be adopted to clarify the distribution of surficial fracture caused by active faults, and high-precision seismic positioning and spatial distribution characteristics of seismic sequences can contribute to understand deep seismogenic faults and geometric features. Thus, we can better analyze the three-dimensional spatial distribution characteristics of seismotectonics and the deep and shallow tectonic relationship. The focal mechanism reveals the property and faulting process to a certain extent, which can help us understand not only the active property of faults, but also the important basis for deep tectonic stress and seismogenic mechanism. In order to study the fault characteristic of the Jinggu earthquake, the stress field characteristics of the source area and the geometric parameters of the fault plane, this paper firstly uses the 15 days aftershock data of the Jingsuo MS6.6 earthquake, to precisely locate the main shock and aftershock sequences using double-difference location method. The results show that the aftershock sequences have clustering characteristics along the NW direction, with a depth mainly of 5~15km. Based on the precise location, calculations are made to the focal mechanisms of a total of 46 earthquakes including the main shock and aftershocks with ML ≥ 3.0 of the Jinggu earthquake. The double-couple(DC)component of the focal mechanism of the main shock shows that nodal plane Ⅰ:The strike is 239°, the dip 81°, and the rake -22°; nodal plane Ⅱ, the strike is 333°, the dip 68°, and the rake -170.31°. According to focal mechanism solutions, there are 42 earthquakes with a focal mechanism of strike-slip type, accounting for 91.3%. According to the distribution of the aftershock sequence, it can be inferred that the nodal plane Ⅱ is the seismogenic fault. The obtained focal mechanism is used to invert the stress field in the source region. The distribution of horizontal maximum principal stress orienation is concentrated. The main features of the regional tectonic stress field are under the NNE-SSW compression(P axis)and the NW-SE extension(T axis)and are also affected by NNW direction stress fields in the central region of Yunnan, which indicates that Jinggu earthquake fault, like Gengma earthquake, is a new NW-trending fault which is under domination of large-scale tectonic stress and effected by local tectonic stress environment. In order to define more accurately the occurrence of the fault plane of the Jinggu earthquake, with the precise location results and the stress field in the source region, the global optimal solution of the fault plane parameters and its error are obtained by using both global searching simulated annealing algorithm and local searching Gauss-Newton method. Since the parameters of the fault plane fitting process use the stress parameters obtained by the focal mechanism inversion, the data obtained by the fault plane fitting is more representative of the rupture plane, that is, the strike 332.75°, the dip 89.53°, and the rake -167.12°. The buried depth of the rupture plane is 2.746km, indicating that the source fault has not cut through the surface. Based on the stress field characteristics and the inversion results of the fault plane, it is preliminarily believed that the seismogenic structure of the Jinggu earthquake is a newly generated nearly vertical right-lateral strike-slip fault with normal component. The rupture plane length is about 17.2km, which does not extend to the Puwen fault zone. Jinggu earthquake occurred in Simao-Puer seismic region in the south of Sichuan-Yunnan plate. Its focal mechanism solution is similar to that of the three sub-events of the Gengma earthquake in November 1988. The seismogenic structure of both of them is NW-trending and the principal stress is NE-SW. The rupture plane of the Jinggu main shock(NW direction)is significantly different from the known near NS direction Lancang Fault and the near NE direction Jinggu Fault in the study area. It is preliminarily inferred that the seismogenic structure of this earthquake has a neogenetic feature.  相似文献   

16.
The Xiaojiang fault zone is located in the southeastern margin of the Tibetan plateau, the boundary faults of Sichuan-Yunnan block and South China block. The largest historical earthquake in Yunnan Province, with magnitude 8 occurred on the western branch of the Xiaojiang Fault in Songming County, 1833. Research on the Late Quaternary surface deformation and strong earthquake rupture behavior on the Xiaojiang Fault is crucial to understand the future seismic risk of the fault zone and the Sichuan-Yunnan region, even crucial for the study of tectonic evolution of the southeastern margin of Tibetan plateau. We have some new understanding through several large trenches excavated on the western branch of the Xiaojiang fault zone. We excavated a large trench at Caohaizi and identified six paleoseismic events, named U through Z from the oldest to the youngest. Ages of these six events are constrained at 40000-36300BC, 35400-24800BC, 9500BC-500AD, 390-720AD, 1120-1620AD and 1750AD-present. The Ganhaizi trench revealed three paleoearthquakes, named GHZ-E1 to GHZ-E3 from the oldest to the youngest. Ages of the three events are constrained at 3300BC-400AD, 770-1120AD, 1460AD-present. The Dafendi trench revealed three paleoearthquakes, named E1 to E3 from the oldest to the youngest, and their ages are constrained at 22300-19600BC, 18820-18400BC, and 18250-present. Caohaizi and Ganhaizi trenches are excavated on the western branch of the Xiaojiang Fault, the distance between them is 400m. We constrained four late Holocene paleoearthquakes with progressive constraining method, which are respectively at 500-720AD, 770-1120AD, AD 1460-1620 and 1833AD, with an average recurrence interval of 370~440a. Large earthquake recurrence in the late Holocene is less than the recurrence interval of~900a as proposed in the previous studies. Thus, the seismic hazard on the Xiaojiang Fault should be reevaluated. We excavated a large trench at Dafendi, about 30km away south of Caohaizi trench. Combining with previous paleoseismological research, it is found that the western branch of Xiaojiang Fault was likely to be dominated by segmented rupturing in the period from late of Late Pleistocene to early and middle Holocene, while it was characterized by large earthquakes clustering and whole segment rupturing since late Holocene.  相似文献   

17.
四川大凉山断裂带古地震研究初步结果   总被引:8,自引:7,他引:8       下载免费PDF全文
沿四川大凉山断裂带的 4条次级断裂开挖了 4个探槽 ,共揭露出 9次古地震事件。根据探槽中年龄样品的测试结果 ,分析了各次事件的距今年龄及其重复间隔。其中 ,有 3个探槽共揭露出4次全新世以来的古地震事件。 9次古地震的垂直位移量在 0 5~ 1 5m之间 ,与鲜水河 -小江断裂带历史地震所产生的垂直位移量进行对比 ,估计它们的震级都在 7级以上  相似文献   

18.
The Bolokenu-Aqikekuduk fault zone(B-A Fault)is a 1 000km long right-lateral strike-slip active fault in the Tianshan Mountains. Its late Quaternary activity characteristics are helpful to understand the role of active strike-slip faults in regional compressional strain distribution and orogenic processes in the continental compression environment, as well as seismic hazard assessment. In this paper, research on the paleoearthquakes is carried out by remote sensing image interpretation, field investigation, trench excavation and Quaternary dating in the Jinghe section of B-A Fault. In this paper, two trenches were excavated on in the pluvial fans of Fan2b in the bulge and Fan3a in the fault scarp. The markers such as different strata, cracks and colluvial wedges in the trenches are identified and the age of sedimentation is determined by means of OSL dating for different strata. Four most recent paleoearthquakes on the B-A Fault are revealed in trench TC1 and three most recent paleoearthquakes are revealed in trench TC2. Only the latest event was constrained by the OSL age among the three events revealed in the trench TC2. Therefore, when establishing the recurrence of the paleoearthquakes, we mainly rely on the paleoearthquake events in trench TC1, which are labeled E1-E4 from oldest to youngest, and their dates are constrained to the following time ranges: E1(19.4±2.5)~(19.0±2.5)ka BP, E2(18.6±1.4)~(17.3±1.4)ka BP, E3(12.2±1.2)~(6.6±0.8)ka BP, and E4 6.9~6.2ka BP, respectively. The earthquake recurrence intervals are(1.2±0.5)ka, (8.7±3.0)ka and(2.8±3)ka, respectively. According to the sedimentation rate of the stratum, it can be judged that there is a sedimentary discontinuity between the paleoearthquakes E2 and E3, and the paleoearthquake events between E2 and E3 may not be recorded by the stratum. Ignoring the sedimentary discontinuous strata and the earthquakes occurring during the sedimentary discontinuity, the earthquake recurrence interval of the Jinghe section of B-A Fault is ~1~3ka. This is consistent with the earthquake recurrence interval(~2ka)calculated from the slip rate and the minimum displacement. The elapsed time of the latest paleoearthquake recorded in the trench is ~6.9~6.2ka BP. The magnitude of the latest event defined by the single event displacement on the fault is ~MW7.4, and a longer earthquake elapsed time indicates the higher seismic risk of the B-A Fault.  相似文献   

19.
简述了高密度电法基本原理,采用高密度电法对盈江盆地南侧的大盈江断裂隐伏段进行了探测。结果表明,大盈江断裂断错全新统地层,推断大盈江断裂为全新世活动断裂。结合探槽开挖结果对高密度电法揭示的隐伏断裂进行了验证,确定了大盈江断裂的走向、具体位置和活动时代。研究表明,高密度电法对隐伏断裂探测是一种简单易行的方法,同时为盈江县工程建设及防震减灾规划提供了依据。   相似文献   

20.
无量山断裂带位于云南西南部,主要由磨黑、宁洱、普文和景谷—云仙4条断裂组成,晚第四纪活动特征明显.受青藏高原隆起影响滇西南块体向南运动,中下地壳广泛存在的低速层为块体运动提供了有利条件,但刚性的临沧花岗岩体对其南向运动起着顶托作用,使得东、西两侧块体运动速率出现差异,且块体运动方向与无量山断裂带呈小角度相交.在此背景下,无量山断裂带表现为水平右旋走滑运动,起着滑动分解应变的作用.在其与横向断层交汇部位或在断裂端部,应力易于集中而引发地震,此次MS6.6地震就发生在断裂的端部.据野外科考调查,在宏观震中区集中出现带状砂土液化和地裂缝等地面破坏.喷砂孔呈串珠状线性分布,主要有NW和NE两组;NW向地裂缝呈右阶雁行状、NE向地裂缝呈左阶雁行状排列特征,它们具有明显的构造成因.地震烈度长轴方向、余震分布和震源机制解等显示,此次地震是沿NW向节面右旋走滑所致,宏观地面破坏特征和微观观测结果非常吻合,一致表明此次地震破裂与景谷—云仙断裂运动有关,其孕震构造应是景谷—云仙断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号