首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

2.
We use high-quality echelle spectra of 24 quasi-stellar objects to provide a calibrated measurement of the total amount of Lyα forest absorption (DA) over the redshift range  2.2 < z < 3.2  . Our measurement of DA excludes absorption from metal lines or the Lyα lines of Lyman-limit systems and damped Lyα systems. We use artificial spectra with realistic flux calibration errors to show that we are able to place continuum levels that are accurate to better than 1 per cent. When we combine our results with our previous results between  1.6 < z < 2.2  , we find that the redshift evolution of DA is well described over  1.6 < z < 3.2  as   A (1 + z )γ  , where   A = 0.0062  and  γ= 2.75  . We detect no significant deviations from a smooth power-law evolution over the redshift range studied. We find less H  i absorption than expected at   z = 3  , implying that the ultraviolet background is  ∼40  per cent higher than expected. Our data appears to be consistent with an H  i ionization rate of  Γ∼ 1.4 × 10−12 s−1  .  相似文献   

3.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

4.
We analyse the transmitted flux in a sample of 17 QSOs spectra at 5.74 ≤ z em≤ 6.42 to obtain tighter constraints on the volume-averaged neutral hydrogen fraction, x H  i , at z ≈ 6. We study separately the narrow transmission windows (peaks) and the wide dark portions (gaps) in the observed absorption spectra. By comparing the statistics of these spectral features with a semi-analytical model of the Lyα forest, we conclude that x H  i evolves smoothly from 10−4.4 at   z = 5.3  to 10−4.2 at   z = 5.6  , with a robust upper limit x H  i < 0.36 at   z = 6.3  . The frequency and physical sizes of the peaks imply an origin in cosmic underdense regions and/or in H  ii regions around faint quasars or galaxies. In one case (the intervening H  ii region of the faint quasar RD J1148+5253 at   z = 5.70  along the line of sight of SDSS J1148+5251 at   z = 6.42  ) the increase of the peak spectral density is explained by the first-ever detected transverse proximity effect in the H  i Lyα forest; this indicates that at least some peaks result from a locally enhanced radiation field. We then obtain a strong lower limit on the foreground QSO lifetime of t Q > 11 Myr. The observed widths of the peaks are found to be systematically larger than the simulated ones. Reasons for such discrepancy might reside either in the photoionization equilibrium assumption or in radiative transfer effects.  相似文献   

5.
As part of a large spectroscopic survey of   z > 5  Lyman break galaxies (LBGs), we have identified a single source which is clearly hosting an active galactic nucleus (AGN). Out of a sample of more than 50 spectroscopically confirmed R -band dropout galaxies at   z ∼ 5  and above, only J104048.6−115550.2 at   z = 5.44  shows evidence for a high ionization potential emission line indicating the presence of a hard ionizing continuum from an AGN. Like most objects in our sample the rest-frame-UV spectrum shows the UV continuum breaking across a Lyα line. Uniquely within this sample of LBGs, emission from N  v is also detected, a clear signature of AGN photoionization. The object is spatially resolved in Hubble Space Telescope ( HST ) imaging. This, and the comparatively high Lyα/N  v flux ratio indicates that the majority of the Lyα (and the UV continuum longward of it) originates from stellar photoionization, a product of the ongoing starburst in the LBG. Even without the AGN emission, this object would have been photometrically selected and spectroscopically confirmed as a Lyman break in our survey. The measured optical flux  ( I AB= 26.1)  is therefore an upper limit to that from the AGN and is of order 100 times fainter than the majority of known quasars at these redshifts. The detection of a single object in our survey volume is consistent with the best current models of high redshift AGN luminosity function, providing a substantial fraction of such AGN is found within luminous starbursting galaxies. We discuss the cosmological implications of this discovery.  相似文献   

6.
Recent results have shown that a substantial fraction of high-redshift Lyman α (Lyα) galaxies contain considerable amounts of dust. This implies that Lyα galaxies are not primordial, as has been thought in the past. However, this dust has not been directly detected in emission; rather it has been inferred based on extinction estimates from rest-frame ultraviolet (UV) and optical observations. This can be tricky, as both dust and old stars redden galactic spectra at the wavelengths used to infer dust. Measuring dust emission directly from these galaxies is thus a more accurate way to estimate the total dust mass, giving us real physical information on the stellar populations and interstellar medium enrichment. New generation instruments, such as the Atacama Large Millimeter Array and Sub-Millimeter Array, should be able to detect dust emission from some of these galaxies in the submillimeter. Using measurements of the UV spectral slopes, we derive far-infrared flux predictions for of a sample of  23 z ≥ 4  Lyα galaxies. We find that in only a few hours, we can detect dust emission from 39 ± 22 per cent of our Lyα galaxies. Comparing these results to those found from a sample of 21 Lyman break galaxies (LBGs), we find that LBGs are on average 60 per cent more likely to be detected than Lyα galaxies, implying that they are more dusty, and thus indicating an evolutionary difference between these objects. These observations will provide better constraints on dust in these galaxies than those derived from their UV and optical fluxes alone. Undeniable proof of dust in these galaxies could explain the larger than expected Lyα equivalent widths seen in many Lyα galaxies today.  相似文献   

7.
We report the result of a search for Lyα emission from the host galaxies of the gamma-ray bursts  (GRBs) 030226 ( z = 1.986), 021004 ( z = 2.335)  and  020124 ( z = 3.198)  . We find that the host galaxy of GRB 021004 is an extended (around 8 kpc) strong Lyα emitter with a rest-frame equivalent width (EW) of 68+12−11Å, and a star formation rate of  10.6 ± 2.0 M yr−1  . We do not detect the hosts of GRB 030226 and GRB 020124, but the upper limits on their Lyα fluxes do not rule out large rest-frame EWs. In the fields of GRB 021004 and GRB 030226 we find seven and five other galaxies, respectively, with excess emission in the narrow-band filter. These galaxies are candidate Lyα-emitting galaxies in the environment of the host galaxies. We have also compiled a list of all   z ≳ 2  GRB hosts, and demonstrate that a scenario where they trace star formation in an unbiased way is compatible with current observational constraints. Fitting the   z = 3  luminosity function (LF) under this assumption results in a characteristic luminosity of   R *= 24.6  and a faint-end slope of  α=−1.55  , consistent with the LF measured for Lyman-break galaxies.  相似文献   

8.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

9.
Three independent observational studies have now detected a narrow  (Δ z ≃ 0.5)  dip centred at   z = 3.2  in the otherwise smooth redshift evolution of the Lyα forest effective optical depth. This feature has previously been interpreted as an indirect signature of rapid photoheating in the intergalactic medium (IGM) during the epoch of He  ii reionization. We examine this interpretation using a semi-analytic model of inhomogeneous He  ii reionization and high-resolution hydrodynamical simulations of the Lyα forest. We instead find that a rapid  (Δ z ≃ 0.2)  boost to the IGM temperature  (Δ T ≃ 104 K)  beginning at   z = 3.4  produces a well understood and generic evolution in the Lyα effective optical depth, where a sudden reduction in the opacity is followed by a gradual, monotonic recovery driven largely by adiabatic cooling in the low-density IGM. This behaviour is inconsistent with the narrow feature in the observational data. If photoheating during He  ii reionization is instead extended over several redshift units, as recent theoretical studies suggest, then the Lyα opacity will evolve smoothly with redshift. We conclude that the sharp dip observed in the Lyα forest effective optical depth is instead most likely due to a narrow peak in the hydrogen photoionization rate around   z = 3.2  , and suggest that it may arise from the modulation of either reprocessed radiation during He  ii reionization, or the opacity of Lyman limit systems.  相似文献   

10.
We have used far-infrared data from IRAS , Infrared Space Observatory ( ISO ), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts  0 < z < 6.5  and I -band luminosities  −20 < I AB < −32  is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO , finding evidence that IRAS 100-μm fluxes at <1 Jy are overestimated by ∼30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR)  ∝ L 0.44±0.07opt  at any fixed redshift below   z = 2  . We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as  (1 + z )1.6±0.3  at   z < 2  for any fixed quasar I -band absolute magnitude fainter than −28. We find no evidence for any correlation between SFR and black hole mass at  0.5 < z < 4  . Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.  相似文献   

11.
The high-redshift Universe contains luminous Lyα emitting sources such as galaxies and quasars. The emitted Lyα radiation is often scattered by surrounding neutral hydrogen atoms. We show that the scattered Lyα radiation obtains a high level of polarization for a wide range of likely environments of high-redshift galaxies. For example, the backscattered Lyα flux observed from galaxies surrounded by a superwind-driven outflow may reach a fractional polarization as high as ∼40 per cent. Equal levels of polarization may be observed from neutral collapsing protogalaxies. Resonant scattering in the diffuse intergalactic medium typically results in a lower polarization amplitude (≲7 per cent), which depends on the flux of the ionizing background. Spectral polarimetry can differentiate between Lyα scattering off infalling gas and outflowing gas; for an outflow, the polarization should increase towards longer wavelengths while for infall the opposite is true. Our numerical results suggest that Lyα polarimetry is feasible with existing instruments, and may provide a new diagnostic of the distribution and kinematics of neutral hydrogen around high-redshift galaxies. Moreover, polarimetry may help suppress infrared lines originating in the Earth's atmosphere, and thus improve the sensitivity of ground-based observations to high-redshift Lyα emitting galaxies outside the currently available redshift windows.  相似文献   

12.
We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at   z = 2.85  in the Spitzer First Look Survey region and is extended over ∼80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200 pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof–Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof–Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO  ( L bol∼ 3.4 ± 0.2 × 1013 L)  and a 1.4 Gyr old simple stellar population with mass  ∼3.9 ± 0.3 × 1011 M  .  相似文献   

13.
We explore several physical effects on the power spectrum of the Lyα forest transmitted flux. The effects we investigate here are not usually part of hydrodynamic simulations and so need to be estimated separately. The most important effect is that of high column density absorbers with damping wings, which add power on large scales. We compute their effect using the observational constraints on their abundance as a function of column density. Ignoring their effect leads to an underestimation of the slope of the linear theory power spectrum. The second effect we investigate is that of fluctuations in the ionizing radiation field. For this purpose we use a very large high-resolution N -body simulation, which allows us to simulate both the fluctuations in the ionizing radiation and the small-scale Lyα forest within the same simulation. We find an enhancement of power on large scales for quasars and a suppression for galaxies. The strength of the effect rapidly increases with increasing redshift, allowing it to be uniquely identified in cases where it is significant. We develop templates that can be used to search for this effect as a function of quasar lifetime, quasar luminosity function and attenuation length. Finally, we explore the effects of galactic winds using hydrodynamic simulations. We find the wind effects on the Lyα forest power spectrum to be degenerate with parameters related to the temperature of the gas that are already marginalized over in cosmological fits. While more work is needed to conclusively exclude all possible systematic errors, our results suggest that, in the context of data analysis procedures, where parameters of the Lyα forest model are properly marginalized over, the flux power spectrum is a reliable tracer of cosmological information.  相似文献   

14.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

15.
Starting from the quasar sample of the Sloan Digital Sky Survey (SDSS) for which the C  iv line is observed, we use an analysis scheme to derive the z -dependence of the maximum mass of active black holes, which overcomes the problems related to the Malmquist bias. The same procedure is applied to the low-redshift sample of SDSS quasars for which Hβ measurements are available. Combining with the results from the previously studied Mg  ii sample, we find that the maximum mass of the quasar population increases as  (1 + z )1.64±0.04  in the redshift range  0.1 z 4  , which includes the epoch of maximum quasar activity.  相似文献   

16.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

17.
Raman scattering by atomic hydrogen converts the UV continuum around Lyβ into optical continuum around Hα, and the basic atomic physics has been discussed in several works on symbiotic stars. We propose that the same process may operate in active galactic nuclei (AGN) and calculate the linear polarization of the broad emission lines Raman-scattered by high-column neutral hydrogen component. The conversion efficiency of the Raman scattering process is discussed and the expected scattered flux is computed using the spectral energy distribution of an AGN given by a typical power law. The high-column H  i component in AGN is suggested by many observations, encompassing the radio through UV and X-ray ranges.   When neutral hydrogen component with a column density ∼1022 cm−2 is present around the active nucleus, it is found that the scattered Hα is characterized by a very broad width ∼20 000 km s−1 and that the strength of the polarized flux is comparable to that of the electron-scattered flux expected from a conventional unified model of narrow-line AGN. The width of the scattered flux is mainly determined by the column density of the neutral scatterers where the total scattering optical depth becomes of order unity. The asymmetry in the Raman scattering cross-section around Lyβ introduces red asymmetric polarized profiles around Hα. The effects of the blended Lyβ and O  vi 1034 doublet are also investigated.   We briefly discuss the spectropolarimetric observations performed on the Seyfert galaxy IRAS 110548-1131 and the narrow line radio galaxy Cyg A. Several predictions regarding the scattering by the high-column neutral hydrogen component in AGN are discussed.  相似文献   

18.
Motivated by recent observational studies of the environment of   z ∼ 6  QSOs, we have used the Millennium Run (MR) simulations to construct a very large  (∼4°× 4°)  mock redshift survey of star-forming galaxies at   z ∼ 6  . We use this simulated survey to study the relation between density enhancements in the distribution of i 775-dropouts and Lyα emitters, and their relation to the most massive haloes and protocluster regions at   z ∼ 6  . Our simulation predicts significant variations in surface density across the sky with some voids and filaments extending over scales of 1°, much larger than probed by current surveys. Approximately one-third of all   z ∼ 6  haloes hosting i -dropouts brighter than   z = 26.5  mag  (≈ M *UV, z =6)  become part of   z = 0  galaxy clusters. i -dropouts associated with protocluster regions are found in regions where the surface density is enhanced on scales ranging from a few to several tens of arcminutes on the sky. We analyse two structures of i -dropouts and Lyα emitters observed with the Subaru Telescope and show that these structures must be the seeds of massive clusters in formation. In striking contrast, six   z ∼ 6  QSO fields observed with Hubble Space Telescope show no significant enhancements in their i 775-dropout number counts. With the present data, we cannot rule out the QSOs being hosted by the most massive haloes. However, neither can we confirm this widely used assumption. We conclude by giving detailed recommendations for the interpretation and planning of observations by current and future ground- and space-based instruments that will shed new light on questions related to the large-scale structure at   z ∼ 6  .  相似文献   

19.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

20.
We propose the apparent shrinking criterion (ASC) to interpret the spatial extent, R w, of transmitted flux windows in the absorption spectra of high- z quasars. The ASC can discriminate between the two regimes in which R w corresponds either to the physical size,   R H  ii   , of the quasar H  ii region or to the distance,   R maxw  , at which the transmitted flux drops to  =0.1  and a Gunn–Peterson (GP) trough appears. In the first case [H  ii region (HR) regime], one can determine the intergalactic medium mean H  i fraction,   x H I  ; in the second [proximity region (PR) regime], the value of R w allows one to measure the local photoionization rate and the local enhancement of the photoionization rate,  ΓG  , due to nearby/intervening galaxies. The ASC has been tested against radiative transfer+smoothed particle hydrodynamics numerical simulations, and applied to a sample of 15 high-   z ( z > 5.8  ) quasar spectra. All sample quasars are found to be in the PR regime; hence, their observed spectral properties (inner flux profile, extent of transmission window) cannot reliably constrain the value of   x H  i   . Four sample quasars show evidence for a local enhancement (up to 50 per cent) in the local photoionization rate possibly produced by a galaxy overdensity. We discuss the possible interpretations and uncertainties of this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号