首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aiming to analyze the site conditions of treeline trees at the highest elevations, we investigated 360 km of treelines in the Upper Valtellina, Italian Alps. We analyzed approximately five trees per km and determined the environmental factors limiting treeline elevation by distinguishing between geomorphologic constraints (mean elevation 2355 m), climatic constraints (2530 m), and human impacts (2335 m). Up to 82% of the 1814 analyzed treeline trees were influenced by geomorphological constraints, whereas human impacts influenced only 3% of the trees. Climatic treelines (15% of trees) were most common in the western sector. Moreover we analyzed the frequency distributions of elevation, slope, and aspect. Elevation was the most important variable that was also strongly associated with climatic treelines. The slope variable was more strongly associated with treelines limited by geomorphology than by climate. By reconstructing the altitudinal dynamics at the Mt. Confinale study site, we found rates of an ongoing treeline upward shift of up to 2.6 m/y in the period 2000–2009. Our results indicate that climatic conditions related to the ongoing air temperature rise in this region will likely enhance the treeline shift, especially at high elevations (>2400 m a.s.l.) and on non-extreme slopes (<45°).  相似文献   

2.
Fine-scale disturbance can increase seed access to suitable substrates, facilitating germinant emergence and survival, which are necessary elements for treeline advance. We conducted an experiment to test this hypothesis in a white spruce (Picea glauca) treeline ecotone in southwest Yukon, Canada. Sixty seed germination quadrats were established at two elevations (treeline and alpine tundra) and subjected to three levels of simulated disturbance. We sowed 125 seeds in half of the quadrats (30) and measured their emergence and survival over 3 years. Soil temperature, moisture, and organic depth were recorded in all treatments. Treeline quadrats had significantly greater seedling emergence and survival than alpine tundra quadrats. Mean soil temperature, moisture, and organic layer depth were all greater in treeline quadrats. Partially scarified quadrats had the highest germinant emergence compared to unscarified and completely scarified quadrats. Completely scarified quadrats had the highest temperature range and the lowest soil moisture. The results indicate that moderate levels of disturbance can positively influence seedling emergence, while more severe disturbance can lead to high temperature ranges and moisture loss that negate the benefits of lower interspecific competition. Collectively, our findings suggest that fine-scale disturbance can play a significant role in influencing seedling presence in treeline ecotones.  相似文献   

3.
Sigmoid wave transitions at alpine treeline   总被引:3,自引:0,他引:3  
Ecotones that are controlled by a single environmental gradient or a set of correlated environmental factors are hypothesized to show a sigmoid wave form in percentage cover as the ecotone is crossed. This study investigates the sigmoid wave hypothesis at the alpine treeline in Glacier National Park, Montana, USA. We find that approximately half of the sampled locations exhibit a sigmoid wave form in percentage cover across the ecotone. These results indicate that in some cases treeline is controlled by a single environmental gradient or a set of correlated environmental factors. However, in other cases, additional factors that are not correlated with the primary controlling gradient act to change the form of the transition. We investigated surficial geology as a possible controlling factor that would not be correlated with the primary climatic gradients found along transects across the alpine treeline. In at least some of the cases, surficial geology type was shown to be significantly associated with differences between sigmoidal and non‐sigmoidal transitions. These results support previous evidence for sigmoid wave transitions at the boreal forest—tundra ecotone, but also show that the alpine treeline case is more complex. We argue that in cases where ecotones are used as sites for monitoring the effects of climate change on vegetation, care should be taken to utilize only sites that exhibit a sigmoidal transition so as to minimize the effects of non‐climate‐related controlling factors on the interpretations.  相似文献   

4.
The alpine treeline ecotone is defined as a forest-grassland or forest-tundra transition boundary either between subalpine forest and treeless grassland, or between subalpine forest and treeless tundra. The alpine treeline ecotone serves irreplaceable ecological functions and provides various ecosystem services. There are three lines associated with the alpine treeline ecotone, the tree species line (i.e., the highest elevational limit of individual tree establishment and growth), the treeline (i.e., the transition line between tree islands and isolated individual trees) and the timber line (i.e., the upper boundary of the closed subalpine forest). The alpine treeline ecotone is the belt region between the tree species line and the timber line of the closed forest. The treeline is very sensitive to climate change and is often used as an indicator for the response of vegetation to global warming. However, there is currently no comprehensive review in the field of alpine treeline advance under global warming. Therefore, this review summarizes the literature and discusses the theoretical bases and challenges in the study of alpine treeline dynamics from the following four aspects: (1) Ecological functions and issues of treeline dynamics; (2) Methodology for monitoring treeline dynamics; (3) Treeline shifts in different climate zones; (4) Driving factors for treeline upward shifting.  相似文献   

5.
《自然地理学》2013,34(3):203-233
The altitudinal treeline ecotone is a windy environment where wind velocities and directions are controlled by local mountain topography and also by the distribution pattern and structures of tree stands. Wind may override the role of heat deficiency in determining treeline position, spatial pattern, ecological conditions, and tree growth. Regular strong permanent winds restrict tree height and usually cause asymmetric and suppressed growth forms that are common in the treeline ecotone. Apart from direct physiological and mechanical effects on trees and ground vegetation, wind also disperses seeds, relocates snow, and locally erodes soils in the treeline ecotone. Wind effects must be considered an important factor that may delay or even preclude establishment of seedling trees on wind-swept terrain. Discussions of a potential climatically driven upward shift of the treeline at the landscape and smaller scales should give greater attention to the varying wind effects because warming cannot compensate for these other factors. The relative importance of microsite facilitation providing shelter from the wind will increase in parallel with the upslope migration of the tree limit into a much windier environment.  相似文献   

6.
Abstract

This study examines the role of surface geomorphic features in tree establishment at the alpine treeline in Glacier National Park, Montana, through the presentation of a multiscale, conceptual model of biogeomorphic relationships at alpine treeline. Empirical observations gathered through a multiscale field methodology over three summers serve as a base for the model. The model highlights the importance of surface geomorphic features, specifically boulders and terrace risers, in creating favorable local site conditions, largely by protecting seedlings from wind. The sheltering effect of surface features enables initial seedling establishment, and in some cases survival, above current treeline locations, thereby initiating a positive feedback effect that encourages subsequent tree establishment. Geomorphic features are therefore important in linking scales of pattern and process at the alpine treeline ecotone.  相似文献   

7.
On Niwot Ridge, alpine climatic factors dominate today within the upper part of the forest-alpine tundra ecotone on the east slope of the Colorado Front Range. This study provides evidence that the climatic conditions controlling the distribution of the upper limit of tree species and growth forms within the ecotone have changed through time. It appears that much of the present forest-alpine tundra ecotone is a relict of past warm climate episodes. There is much evidence that, in the past, tree forms were more symmetrical and less deformed, tree trunks with larger diameters existed, and the trees were more extensive in areal coverage. However, no evidence exists to show that the upper limit of tree species growth was more than marginally higher in the past than today. The treeline appears to be stable to historical and Holocene climatic fluctuations, but the altitudinal limits of seedling establishment and survival are not stable. The liming of climatic changes in the Front Range and their possible influence on the distribution of the trees within the ecotone are reviewed. Because of its extreme easterly location, slight but significant climatic variations may be observed within the forest-alpine tundra ecotone of Niwot Ridge, but are not observed elsewhere.  相似文献   

8.
We analyzed surface-sediment samples collected along transects from three sub-basins of a relatively large (~115 ha), bathymetrically complex lake, in northwest Ontario, Canada, to assess the reproducibility of diatom species habitats and diversity along a water-depth gradient. Transects displayed different orientations with respect to prevailing wind direction and varied in complexity and degree of slope along the lake bottom. Each transect consisted of three replicate samples at a resolution of ~1 m water depth from ~1 to 30 m for the two deep-basin transects and from ~1 to 18 m in the shallower basin. Distinct diatom assemblages were identified in all transects: (1) a near-shore community composed largely of attached life-forms and some motile benthic taxa, (2) a mid-depth community composed largely of motile life-forms and other benthic taxa that are adapted to lower light conditions (e.g. Staurosirella pinnata), and (3) a deep-water community dominated by planktonic taxa. Species richness was highest in the benthic zones (<9 m), with greatest species evenness in the mid-depth zone (~3–9 m). Species richness and evenness were highly correlated across the three transects (r = 0.89–0.93, p < 0.01). Diatom-inferred depth models were developed from the individual transects to assess reproducibility and applicability for down-core analyses using modern analog (MAT) and weighted-averaging (WA-PLS) approaches. Coefficients of determination (r 2) for these models ranged from 0.80 to 0.98, and RMSEP ranged from 1.2 to 4.2 m. The models developed from the transect with the highest resolution sampling, gentlest non-complex slope and shallowest maximum depth were the strongest ( r\textMAT2 = 0.97 r_{\text{MAT}}^{2} = 0.97 ; r\textWA - PLS2 = 0.98 r_{\text{WA - PLS}}^{2} = 0.98 ) and had the lowest RMSEP (MAT = 1.2 m, WA-PLS = 1.3 m). These inference models can be used to infer past fluctuations in the depth of the benthic/planktonic boundary from cores retrieved near this ecotone and provide a sensitive record of the past change in location of the benthic zone. These types of data can be used to assess past variability in droughts and lake levels to better plan for potential future extremes. Such records incorporate more realistic estimates of natural variability than the ~100-year instrumental records currently used by water resource managers.  相似文献   

9.
Climate constitutes the main limiting factor for tree-ring growth in high-elevation forests, and the relationship between tree-ring growth and climate is complex. Based on tree-ring chronology and meteorological data, the influence of precipitation, mean temperature and mean minimum temperature at yearly, seasonal and monthly scales on the tree-ring growth of Picea crossifolia was studied at treeline ecotones in the Qilian Mountains, northwestern China. The results show that growing season temperatures of previous and current years are important limiting factors on tree-ring growth, particularly June mean temperature and mean minimum temperature of current year. The precipitations in the previous winter and current spring have a positive correlation, and in the current fall has a negative correlation with tree-ring growth, but these correlations are not significant. Our results suggest that temperature controls tree-ring growth more strongly than precipitation at treeline ecotones in the Qilian Mountains.  相似文献   

10.
We analyzed subfossil chironomids, sediment organic matter and sediment particle size data from a 1.11-m-long freeze core collected from Carleton Lake (unofficial name), located approximately 120 km north of the modern treeline. This well-dated core spans the last ca. 6,500 years. Two chironomid transfer functions were applied to infer mean July air temperatures. Our results indicated that the chironomid-inferred temperatures from this lake sediment record did not pass a significance test, suggesting that other factors in addition to temperature may have been important in structuring the chironomid community through time. Although not statistically significant, the chironomid-inferred temperatures from this site do follow a familiar pattern, with highest inferred temperatures occurring during the Holocene Thermal Maximum (~6–4 cal kyr BP), followed by a long-term cooling trend, which is reversed during the last 600 years. The largest change in the chironomid assemblage, which occurred between ca. 4,600 and 3,900 cal yr BP is possibly related to the well-documented northward advance and subsequent retreat of treeline in this region.  相似文献   

11.
The complexity of hydrological processes and lack of data for modeling require the use of specific tools for non-linear natural phenomenon. In this paper, an effort has been made to develop a conjunction model – wavelet transformation, data-driven models, and genetic algorithm (GA) – for forecasting the daily flow of a river in northern Algeria using the time series of runoff. This catchment has a semi-arid climate and strong variability in runoff. The original time series was decomposed into multi-frequency time series by wavelet transform algorithm and used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. Several factors must be optimized to determine the best model structures. Wavelet-based data-driven models using a GA are designed to optimize model structure. The performances of wavelet-based data-driven models (i.e. WANFIS and WANN) were superior to those of conventional models. WANFIS (RMSE = 12.15 m3/s, EC = 87.32%, R = .934) and WANN (RMSE = 15.73 m3/s, EC = 78.83%, R = .888) models improved the performances of ANFIS (RMSE = 23.13 m3/s, EC = 54.11%, R = .748) and ANN (RMSE = 22.43 m3/s, EC = 56.90%, R = .755) during the test period.  相似文献   

12.
Stratigraphic analysis of fossil chironomid head capsules wasperformed at North Crater Lake and Lake of the Woods, located at treeline (2250m) in the Ashnola region of southernmost British Columbia. Priorto 10,000 yr BP, cold conditions were indicated by the lack oftemperate taxa and the presence of cold-stenotherms. The abundance anddiversity of warm-adapted taxa (e.g., Dicrotendipes,Microtendipes, Polypedilum and Cladopelma)increased rapidly after 9500 yr BP, whereas taxa indicative ofcold conditions disappeared. Beginning prior to deposition of the Mazama ash(6730 ± 40 yr BP), several warm-adapted taxa decreasedin abundance. Mid- to late-Holocene assemblages (ca. 4500yr BP to present) indicated continued cooling as revealed by afurther reduction in diversity and abundance of warm-adapted taxa atboth lakes, and the reappearance of cold-stenotherms in Lake of theWoods. Diversity changes in the cores paralleled the inferred climatic changes.Diversity was low during the late-glacial, increased in theearly-Holocene, and declined after 5400 yr BP.To quantitatively infer past climatic changes, a newweighted yphen;averaging partial-least-squares (WA-PLS)model was developed and applied to the fossil midge data. The quantitativereconstructions revealed late-glacial mean July air temperatures rangingfrom about 8 to 10°C. Summer air temperatures were highest inthe early Holocene (13 to 17°C), gradually decreasing by about3°C through the mid- to late-Holocene.  相似文献   

13.
This study examines the role of surface geomorphic features in tree establishment at the alpine treeline in Glacier National Park, Montana, through the presentation of a multiscale, conceptual model of biogeomorphic relationships at alpine treeline. Empirical observations gathered through a multiscale field methodology over three summers serve as a base for the model. The model highlights the importance of surface geomorphic features, specifically boulders and terrace risers, in creating favorable local site conditions, largely by protecting seedlings from wind. The sheltering effect of surface features enables initial seedling establishment, and in some cases survival, above current treeline locations, thereby initiating a positive feedback effect that encourages subsequent tree establishment. Geomorphic features are therefore important in linking scales of pattern and process at the alpine treeline ecotone.  相似文献   

14.
长白山北坡岳桦林线变动的水热条件分析   总被引:3,自引:0,他引:3  
近50年来长白山北坡林线种群呈现明显的扩张态势。为揭示林线变动机制,本文以长白山天池气象站的气象数据(1953-2007年)为基础,结合野外的气温观测,以温暖指数(WI)及湿润指数(HI)为生态气候指标,以16℃·月和68.8 mm/℃·月为阈值,通过数据保证率的计算推测55年来长白山北坡岳桦林线的水热条件变化。结果表明:以WI和HI指标确定的林线位置分别在1975~2460 m和1584~2231 m。WI与HI变化对林线高度变动影响的交互作用不显著(p>0.05),WI与HI变化呈显著负相关(p<0.01),两种林线变化也呈负相关(r=-0.11<0),交互作用和相关分析结果显示水热条件的不同步变化使岳桦林线上侵不能达到各自的潜在高度,林线位置波动在1975~2231 m。林线上缘波动的复杂程度高于下缘,波动幅度与胁迫力的大小呈正相关。  相似文献   

15.
Landscapes in the ecotone between forest and tundra contain a mosaic of patches of trees, meadows, lakes, disturbed areas, and other features. The structure of this mosaic affects species habitat and potential ecotone response to global change. However, the alpine forest-tundra ecotone may be insensitive to climatic change if it is a climatic relict or is frequently disturbed. We used GIS and multivariate statistics to (1) analyze landscape structure in transects across the ecotone in Rocky Mountain National Park, (2) identify the major variants of forest-tundra ecotone, and (3) identify the influence of the environment and natural disturbances on variation in the landscape structure of the ecotone. There are six major types of ecotone varying in the amount of natural disturbances, permanent features (e.g., lakes), closed forest, patch forest, and krummholz. Variation is primarily related to slope, elevation, aspect, and geology associated with the morphology of the mountains and the disturbances they produce. The ecotone is not strongly structured by natural disturbances; thus, it may be more strongly controlled by and sensitive to climatic change than in areas where disturbance is more prevalent. Monitoring of potential ecotone response to global change is feasible, if tailored to the types of ecotone and their expected response.  相似文献   

16.
Diatom assemblages in surface sediments were sampled along three transects in Lake 239, from the Experimental Lakes Area (NW Ontario), and analyzed in order to explore the relationship between modern species distributions and water depth. Approximately 170 diatom species were identified in surficial sediments at lake depths from 2 to 30 m. The species composition varied with sample depth but remained highly similar across all three transects. The main patterns of variation in the diatom assemblages across transects, derived from a detrended correspondence analysis (DCA), showed that assemblages were highly correlated (r = 0.97 to 0.98). At depths > 8 m the pattern of predominantly benthic composition changed to a planktonic assemblage dominated by Cyclotella stelligera. This depth currently corresponds to the depth of 1% light penetration as assessed from extinction coefficient measurements. Diatom species diversity increases with the switch to the near-shore benthic taxa in all three transects. Additionally, there is a large decrease in the ratio of chrysophyte scales to diatoms at depths < 8 m. Light transmission data from wet and dry periods over the last 35 years suggests that during dry periods the extent of the littoral zone should change by over 2 m. We suggest that cores along a transect from 8 to 14 m should provide a highly sensitive location for detailed paleoclimatic study.  相似文献   

17.
Landscapes in the ecotone between forest and tundra contain a mosaic of patches of trees, meadows, lakes, disturbed areas, and other features. The structure of this mosaic affects species habitat and potential ecotone response to global change. However, the alpine forest-tundra ecotone may be insensitive to climatic change if it is a climatic relict or is frequently disturbed. We used GIS and multivariate statistics to (1) analyze landscape structure in transects across the ecotone in Rocky Mountain National Park, (2) identify the major variants of forest-tundra ecotone, and (3) identify the influence of the environment and natural disturbances on variation in the landscape structure of the ecotone. There are six major types of ecotone varying in the amount of natural disturbances, permanent features (e.g., lakes), closed forest, patch forest, and krummholz. Variation is primarily related to slope, elevation, aspect, and geology associated with the morphology of the mountains and the disturbances they produce. The ecotone is not strongly structured by natural disturbances; thus, it may be more strongly controlled by and sensitive to climatic change than in areas where disturbance is more prevalent. Monitoring of potential ecotone response to global change is feasible, if tailored to the types of ecotone and their expected response.  相似文献   

18.
Elemental and isotopic compositions of organic matter in surficial sediments from five transects across Lagoa do Caçó (Brazil) were analyzed to identify the depth-related processes that affect the production and deposition of sedimentary organic matter in this shallow tropical lake. Each of four transverse transects began at a margin dominated by aquatic macrophytes (Eleocharis), crossed the central deep part of the lake, and terminated in the opposite, macrophyte-dominated margin. In each transect, TOC concentrations, C/N ratios, and δ13C values decreased between 0 and 4 m, whereas δ15N values increased. The variables remained stable in sediment from 4 m water depth to the center of the lake at 10 m. The depth-related patterns reflect differences in both the delivery and the deposition of organic matter in the lake. Organic matter is produced in abundance in the marginal area by emersed and submerged macrophyte vegetation that diminishes with depth and disappears at 4 meters. After the disappearance of macrophytes, organic matter is produced at low rates principally by open-lake phytoplankton. Drawdown of dissolved oxygen is high in the lake margins, but it is low in the oligotrophic open waters of the lake. Preservation of organic matter is consequently better in sediments of the lake margins than in deep waters. The depth-related pattern of organic matter delivery and deposition in the sediments of Lagoa do Caçó, in which water levels are sensitive to groundwater fluctuations, shows that the elemental and isotopic compositions of sediment organic matter can provide a record of changes in the paleohydrology of this and other similar shallow lake systems.  相似文献   

19.
The closed Tangra Yumco Basin underwent the strongest Quaternary lake-level changes so far recorded on the Tibetan Plateau. It was hitherto unknown what effect this had on local Holocene vegetation development. A 3.6-m sediment core from a recessional lake terrace at 4,700 m a.s.l., 160 m above the present lake level of Tangra Yumco, was studied to reconstruct Holocene flooding phases (sedimentology and ostracod analyses), vegetation dynamics and human influence (palynology, charcoal and coprophilous fungi analyses). Peat at the base of the profile proves lake level was below 4,700 m a.s.l. during the Pleistocene/Holocene transition. A deep-lake phase started after 11 cal ka BP, but the ostracod record indicates the level was not higher than ~4,720 m a.s.l. (180 m above present) and decreased gradually after the early Holocene maximum. Additional sediment ages from the basin suggest recession of Tangra Yumco from the coring site after 2.6 cal ka BP, with a shallow local lake persisting at the site until ~1 cal ka BP. The final peat formation indicates drier conditions thereafter. Persistence of Artemisia steppe during the Holocene lake high-stand resembles palynological records from west Tibet that indicate early Holocene aridity, in spite of high lake levels that may have resulted from meltwater input. Yet pollen assemblages indicate humidity closer to that of present potential forest areas near Lhasa, with 500–600 mm annual precipitation. Thus, the early mid-Holocene humidity was sufficient to sustain at least juniper forest, but Artemisia dominance persisted as a consequence of a combination of environmental disturbances such as (1) strong early Holocene climate fluctuations, (2) inundation of habitats suitable for forest, (3) extensive water surfaces that served as barriers to terrestrial diaspore transport from refuge areas, (4) strong erosion that denuded the non-flooded upper slopes and (5) increasing human influence since the late glacial.  相似文献   

20.
Gully erosion in the Black Soil Region of China has posed a threat to food security. This study aimed to determine the spatial distribution and morphologic characteristics of gullies in the region and their topographic thresholds. A 28 km2 watershed was surveyed and 117 gullies measured. The results showed that: (1) Gullies were distributed equally on both hillslope and valley floor positions, with a total gully density of .66 km/km2. (2) The mean depth, width, and cross-sectional area of gullies were .74 m, 2.39 m, and 2.43 m2, respectively. These characteristics varied among gullies according to their topographic positions and slope gradients. Individual gully volume (V) was well predicted from gully length (L) by V = 2.08L0.96 (r2 = .66). Total gully volume (V) of each sub-watershed was predicted from mean slope gradient (S) and drainage area (A) as V = 275800S ? 8600A (r2 = .73). (3) Gully erosion was more serious in steeper sub-watersheds and steeper hillslope positions. Gullies were wider in regions with relatively larger drainage areas, except for those developed in the main valley. The topographic threshold for gully initiation was S = .10A?0.34, which indicated gully erosion was dominated by surface runoff. (4) Human activities, such as road construction, played a significant role in gully erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号