首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 168 毫秒
1.
The seasonal variability of the significant wave height(SWH) in the South China Sea(SCS) is investigated using the most up-to-date gridded daily altimeter data for the period of September 2009 to August 2015. The results indicate that the SWH shows a uniform seasonal variation in the whole SCS, with its maxima occurring in December/January and minima in May. Throughout the year, the SWH in the SCS is the largest around Luzon Strait(LS) and then gradually decreases southward across the basin. The surface wind speed has a similar seasonal variation, but with different spatial distributions in most months of the year. Further analysis indicates that the observed SWH variations are dominated by swell. The wind sea height, however, is much smaller. It is the the largest in two regions southwest of Taiwan Island and southeast of Vietnam Coast during the northeasterly monsoon, while the largest in the central/southern SCS during the southwesterly monsoon. The extreme wave condition also experiences a significant seasonal variation. In most regions of the northern and central SCS, the maxima of the 99 th percentile SWH that are larger than the SWH theoretically calculated with the wind speed for the fully developed seas mainly appear in August–November, closely related to strong tropical cyclone activities.Compared with previous studies, it is also implied that the wave climate in the Pacific Ocean plays an important role in the wave climate variations in the SCS.  相似文献   

2.
HY-2 satellite is the first satellite for dynamic environmental parameters measurement of China,which was launched on 16th August 2011.A scanning microwave radiometer(RM) is carried for sea surface temperature(SST),sea surface wind speed,columnar water vapor and columnar cloud liquid water detection.In this paper,the initial SST product of RM was validated with in-situ data of National Data of Buoy Center(NDBC) mooring and Argo buoy.The validation results indicate the accuracy of RM SST is better than 1.7 C.The comparison of RM SST and WindSat SST shows the former is warmer than the latter at high sea surface wind speed and the difference between these SSTs is depend on the sea surface wind speed.Then,the relationship between the errors of RM SST and sea surface wind speed was analyzed using NDBC mooring measurements.Based on the results of assessment and errors analysis,the suggestions of taking account of the affection of sea surface wind speed and using sea surface wind speed and direction derived from the microwave scatteromter aboard on HY-2 for SST product calibration were given for retrieval algorithm improvement.  相似文献   

3.
Sea-level variation/change and thermal contribution in the Bering Sea   总被引:2,自引:0,他引:2  
The long-term sea-level trend in the Bering Sea is obtained by the analysis of TOPEX/Poseidon altimeter data, including the data of two tide gauges. The averaged sea-level in the Bering Sea rises at a rate of 2.47 mm/a from 1992 to 2002. The mean sea-level is falling in the most part of the Bering Sea, especially in its central basin, and it is rising in the northeastern part of the Bering Sea. During the 1998/99 change, the sea-level anomaly differences exhibit a significant sea-level anomaly fall in the deep basin of the Bering Sea,which is roughly in the same position where a prominent SST fall exists. The maximal fall of sea-level is about 10 cm in the southwestern part of the Bering Sea, and the maximal fall of about 2℃ in the SST also appeared in the same region as the sea level did.The steric sea-level change due to temperature variations is discussed. The results are compared with the TOPEX/Poseidon altimeter data at the different spatial scales. It is indicated that the seasonal amplitude of the steric height is about 35% of the observed TOPEX/Poseidon amplitude, which is much smaller than the 83% in the mid-latitudes area. The systematic difference between the TOPEX/Poseidon data with the range of about 7.5 cm and the thermal contribution with the range of about 2.5 cm is about 5 cm. This indicates that the thermal effect on the sea level is not as important as the case in the mid-latitudes area. In the Bering Sea, the phase of the steric height leads the observed sea level by about three months.  相似文献   

4.
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.  相似文献   

5.
A scanning microwave radiometer(RM) was launched on August 16,2011,on board HY-2 satellite.The six-month long global sea surface wind speeds observed by the HY-2 scanning microwave radiometer are preliminarily validated using in-situ measurements and WindSat observations,respectively,from January to June 2012.The wind speed root-mean-square(RMS) difference of the comparisons with in-situ data is 1.89 m/s for the measurements of NDBC and 1.72 m/s for the recent four-month data measured by PY30-1 oil platform,respectively.On a global scale,the wind speeds of HY-2 RM are compared with the sea surface wind speeds derived from WindSat,the RMS difference of 1.85 m/s for HY-2 RM collocated observations data set is calculated in the same period as above.With analyzing the global map of a mean difference between HY-2 RM and WindSat,it appears that the bias of the sea surface wind speed is obviously higher in the inshore regions.In the open sea,there is a relatively higher positive bias in the mid-latitude regions due to the overestimation of wind speed observations,while the wind speeds are underestimated in the Southern Ocean by HY-2 RM relative to WindSat observations.  相似文献   

6.
The global distributions of the air-sea CO2 transfer velocity and flux are retrieved from TOPEX/Poseidon and Jason altimeter data from October 1992 to December 2009 using a combined algorithm. The 17 a average global, area-weighted, Schmidt number-corrected mean gas transfer velocity is 21.26 cm/h, and the full exploration of the uncertainty of this estimate awaits further data. The average total CO2 flux (calculated by carbon) from atmosphere to ocean during the 17 a was 2.58 Pg/a. The highest transfer velocity is in the circumpolar current area, because of constant high wind speeds and currents there. This results in strong CO2 fluxes. CO2 fluxes are strong but opposite direction in the equatorial east Pacific Ocean, because the air-sea CO2 partial pressure difference is the largest in the global cceans. The results differ from the previous studies calculated using the wind speed. It is demonstrated that the air-sea transfer velocity is very important for estimating air-sea CO2 flux. It is critical to have an accurate estimation for improving calculation of CO2 flux within climate change studies.  相似文献   

7.
Long-term variations in a sea surface wind speed(WS) and a significant wave height(SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation,and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a(1988–2011) cross-calibrated, multi-platform(CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III(WW3) wave model forced by CCMP wind data. The results show the following.(1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of3.38 cm/(s·a) in the WS, 1.3 cm/a in the SWH.(2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May(MAM) and December-January-February(DJF), followed by June-July-August(JJA), and smallest in September-October-November(SON).(3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gulf, and the Gulf of Thailand exhibited a significant increase in all seasons.(4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.  相似文献   

8.
中国HY-2卫星雷达高度计有效波高真实性检验   总被引:9,自引:5,他引:4  
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency(Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height(SWH) for more than three years(October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center(NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error(RMSE) and mean bias of HY-2SWH is 0.38 m and(–0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data,the RMSE and the mean bias is 0.36 m and(–0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and(0.00±0.26) m,respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than –0.31 m before April2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.  相似文献   

9.
The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1Synthetic Aperture Radar(SAR) images, including both significant wave height(SWH) and mean wave period(MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function(GMF) model,denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method(PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty–five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation(STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error.Additional 50 images taken in China's seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts(ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.  相似文献   

10.
Utilizing the 45 a European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis wave data(ERA-40),the long-term trend of the sea surface wind speed and(wind wave,swell,mixed wave)wave height in the global ocean at grid point 1.5×1.5 during the last 44 a is analyzed.It is discovered that a majority of global ocean swell wave height exhibits a significant linear increasing trend(2–8 cm/decade),the distribution of annual linear trend of the significant wave height(SWH)has good consistency with that of the swell wave height.The sea surface wind speed shows an annually linear increasing trend mainly concentrated in the most waters of Southern Hemisphere westerlies,high latitude of the North Pacific,Indian Ocean north of 30 S,the waters near the western equatorial Pacific and low latitudes of the Atlantic waters,and the annually linear decreasing mainly in central and eastern equator of the Pacific,Juan.Fernandez Archipelago,the waters near South Georgia Island in the Atlantic waters.The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed.Another find is that the swell is dominant in the mixed wave,the swell index in the central ocean is generally greater than that in the offshore,and the swell index in the eastern ocean coast is greater than that in the western ocean inshore,and in year-round hemisphere westerlies the swell index is relatively low.  相似文献   

11.
卫星高度计实现了对全球性或区域性的海洋参量的实时监测,TOPEX卫星高度计提供了迄今为止时间序列最长、数据质量最高的全球海面风速和有效波高的同步观测资料。利用TOPEX卫星高度计资料,分析了有效波高4m以上的巨浪在台湾岛周边海域的时空分布特征,结果表明台湾岛周边海域巨浪的分布具有明显的季节特征。每年平均有效波高最大值大多数出现在夏季,春季是1a中有效波高最小的季节,而秋季和冬季是巨浪出现频率最高的季节。波高大于6m的巨浪大都出现在台湾岛东部及东北部海域,在南部海域出现较少。  相似文献   

12.
通过对TOPEX/Poseidon高度计资料与NDBC浮标实测数据进行时空匹配处理,得到同步数据集,利用人工神经网络方法试验得到海面风速反演算法,并与业务运行的M CW算法进行分析比较,指出考虑波浪状态影响因素的神经网络算法在均方根误差和对称性方面的优越性。研究表明利用神经网络方法反演海面风速是可行的。  相似文献   

13.
利用TOPEX卫星高度计资料分析东中国海的风、浪场特征   总被引:3,自引:0,他引:3  
利用TOPEX卫星高度计和日本气象厅浮标观测资料,对东中国海的有效波高和风速进行比较,分析了卫星高度计资料的有效性。利用有效波高和风速的3种概率密度函数分布,结合TOPEX卫星高度计资料,并采用最大似然方法对统计分布参数进行估计,结果表明,有效波高的对数-正态概率密度分布与观测资料的直方图在有效波高的整个范围内符合较好,风速的直方图与Weibul概率密度分布符合较好。同时,分析了有效波高大于4 m的巨浪在东中国海的时空分布特征,表明巨浪多出现在冬、秋两季,平均有效波高最大值出现在夏季,且主要分布在东中国海东南部。  相似文献   

14.
0414号"云娜"台风浪数值试验   总被引:3,自引:0,他引:3  
闻斌  于福江 《海洋预报》2006,23(2):10-18
利用美国NOAA/NCEP开发的海浪数值模式WAVEWATCHⅢ。以每天4次的NOAA/NCEP再分析风场资料为输入,模拟了2004年8月8~12日西北太平洋海域的0414号“云娜”台风引起的海浪。通过分析TOPEX/Poseidon(以下简称T/P)高度计的星下轨迹浪观测资料和WAVEWATCHⅢ模式后报的有效波高大小,可以看出模式能够较好地模拟台风浪。  相似文献   

15.
使用1992年10月-1998年12月连续75个月、230个重复周期的Topex/Poseidon卫星高度计有效波高资料,对南北大西洋波高熵的空间分布特征和时间变化规律进行了研究,统计分析了大西洋波高熵的多年的空间分布特征和多年各月的时间变化规律。结果表明,大西洋波高熵呈现出中间低、南北高的马鞍形空间分布特征和明显季节变化的规律,与大西洋的平均有效波高、气候的地理分布以及大气活动分布特征和变化规律相一致。  相似文献   

16.
以墨西哥湾同步高度计、浮标资料为例,研究了海浪成长状态对高度计风速反演的影响。同步的高度计风速和浮标风速比较显示,在墨西哥湾地区,海浪成长状态对高度计风速反演有较大影响。在考虑海浪成长状态影响的条件下,利用谱模型反演高度计风速,取得了较好的效果。与目前TOPEX/Poseidon高度计风速反演业务化算法相比,在海浪未充分成长条件下,考虑海浪成长状态影响后,根据谱模型反演获得的风速与浮标风速之间的均方根误差减小了30%,平均误差减小了83%。在利用谱模型算法反演高度计风速时,谱模型中的波龄因子(表示海浪成长状态)可以根据高度计测得的有效波高和风速获得,因此该方法具有广泛的适用性。  相似文献   

17.
太平洋波高分布及变化规律研究   总被引:4,自引:0,他引:4  
使用 Topex/ Poseidon卫星高度计 1 992年 1 0月~ 1 998年 1 2月连续 75个月 ,2 30个重复周期的有效波高资料对南北太平洋的有效波高进行了统计 ,分析了太平洋有效波高的多年平均、多年各月平均和多年各季平均的空间分布特征和时间变化规律。结果表明 ,太平洋波高分布具有明显季节变化的规律 ,与太平洋的风速分布特征具有良好的对应关系  相似文献   

18.
Imaging altimeter (IALT) is a new type of radar altimeter system. In contrast to the conventional nadir-looking altimeters, such as HY-2A altimeter, Jason-1/2, and TOPEX/Poseidon, IALT observes the earth surface at low incident angles (2.5°–8°), so its swath is much wider and its spatial resolution is much higher than the previous altimeters. This paper presents a wind speed inversion method for the recently launched IALT onboard Tiangong-2 space station. Since the current calibration results of IALT do not agree well with the well-known wind geophysical model function at low incidence angles, a neural network is used to retrieve the ocean surface wind speed in this study. The wind speed inversion accuracy is evaluated by comparing with the ECMWF reanalysis wind speed, buoy wind speed, and in-situ ship measurements. The results show that the retrieved wind speed bias is about –0.21 m/s, and the root-mean-square (RMS) error is about 1.85 m/s. The wind speed accuracy of IALT meets the performance requirement.  相似文献   

19.
利用 TOPEX卫星高度计测量的有效波高资料 ,对中国近海 9个海域进行卫星高度计的 C,Ku两波段测量值的比较分析与处理 ,得出合理的有效波高数值。利用三参数 Weibull分布 ,以渤海海域、上海附近海域和南海东部海域作为特定区进行有效波高的极值统计预报 ,并进行了统计分析  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号