首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have used the data from the COBE satellite to search for delayed microwave emission (31 - 90 GHz) from Gamma Ray Bursts (GRBs). The large 7° beam of COBE is well matched to the large positional uncertainties in the GRB locations, although it also means that fluxes from (point source) GRB objects will be diluted. In view of this we are doing a statistical search of the GRBs which occurred during the currently released COBE DMR data (years 1990 and 1991), which overlap 200 GRBs recorded by GRO. Here we concentrate on just the top 10 GRBs (in peak counts/second). We obtain the limits on the emission by comparing the COBE fluxes before and after the GRB at the GRB location. Since it is thought that the microwave emission should lag the GRB event, we have searched the GRB position for emission in the few months following the GRB occurrence.  相似文献   

2.
A systematic study of the archival images for the error boxes of cosmic gamma-ray bursts (GRBs) obtained at the Palomar (USA) and Siding Spring (Australia) Observatories during the DSS allsky survey has revealed an optical transient with a magnitude of 17.8 within the error circle of the bright event GRB 920925C on the plate taken 6 h after the burst. The position of the object falls within the IPN error box for the burst. Analysis of the event properties suggests that the detected transient is most likely the optical afterglow from GRB 920925C. This event occurred 4.5 yr before GRB 970228, which has been considered to be the first optically identified GRB up until now.  相似文献   

3.
SVOM (Space-based multi-band astronomical Variable Object Monitor) is a future Chinese-French satellite mission which is dedicated to Gamma-Ray Burst (GRB) studies. Its anti-solar pointing strategy makes the Earth cross the field of view of its payload every orbit. In this paper, we present the variations of the gamma-ray background of the two high energy instruments aboard SVOM, the Gamma-Ray Monitor (GRM) and ECLAIRs, as a function of the Earth position. We conclude with an estimate of the Earth influence on their sensitivity and their GRB detection capability.  相似文献   

4.
Recent observations of the environments of gamma-ray bursts (GRBs) favour massive stars as their progenitors, which are likely to be surrounded by gas and dust. The visibility of the optical and UV emission of a GRB is expected to depend on the characteristics of both the dust and the GRB emission itself. A reasonable distribution of surrounding dust is capable of absorbing all the optical and UV emission of the optical flash and afterglow of a GRB, unless the optical flash has a peak isotropic luminosity L peak≳1049 erg s−1 . This means that dark bursts should exist and these bursts will have to be studied at infrared rather than optical wavelengths. In this paper details will be given about the infrared GRB dust emission. The reprocessed dust emission peaks at a rest-frame wavelength of about 8 μm. Forthcoming space telescopes, in particular the IRAC camera on board the Space Infrared Telescope Facility , could detect this emission out to a redshift of about two. However, an accurate position of the GRB afterglow must be provided for this emission to be identified, because the light curve of the reprocessed dust emission does not vary on time-scales less than several years.  相似文献   

5.
Gamma-ray bursts (GRBs) are powerful probes of the early Universe, but locating and identifying very distant GRBs remain challenging. We report here the discovery of the K -band afterglow of Swift GRB 060923A, imaged within the first hour post-burst, and the faintest so far found. It was not detected in any bluer bands to deep limits, making it a candidate very high- z burst  ( z ≳ 11)  . However, our later-time optical imaging and spectroscopy reveal a faint galaxy coincident with the GRB position which, if it is the host, implies a more moderate redshift (most likely   z ≲ 2.8  ) and therefore that dust is the likely cause of the very red-afterglow colour. This being the case, it is one of the few instances so far found of a GRB afterglow with high-dust extinction.  相似文献   

6.
The extremely energetic ( approximately 10-4 ergs cm-2) gamma-ray burst (GRB) of 1999 December 8 was triangulated to an approximately 14 arcmin2 error box approximately 1.8 days after its arrival at Earth with the third interplanetary network (IPN), which consists of the Ulysses, Near-Earth Asteroid Rendezvous, and Wind spacecraft. Radio observations with the Very Large Array approximately 2.7 days after the burst revealed a bright fading counterpart whose position is consistent with that of an optical transient source with a redshift of 0.707. We present the time history, peak flux, fluence, and refined 1.3 arcmin2 error box of this event and discuss its energetics. This is the first time that a counterpart has been found for a GRB localized only by the IPN.  相似文献   

7.
GRB 100418A is a long burst at z?=?0.624 without detection of associated supernova (SN). We present a detailed analysis on this event and discuss possible origins of its multi-wavelength emission. The temporal features of this event is similar to GRB 060614, a well-known nearby long GRB without SN association (possibly a Type I GRB), indicating that the two events may be cosmic twins. However, both the circum-burst medium density and the GRB classification based on the gamma-ray energy and spectrum suggest that GRB 100418A would be a Type II GRB. These results make a great puzzle on the progenitors of this kind of events, if they belong to the same population.  相似文献   

8.
The Cambridge Low Frequency Synthesis Telescope (CLFST) is being used to search for prompt radio emission from GRBs at 151 MHz. For this search a special observing mode has recently been developed; the antennas of the CLFST are split into seven groups which are spaced about 30° apart. When triggered by the real-time signals from the BACODINE system the antennas are slewed to the GRB position, with data being sampled at 1.5 or 3-s intervals. The antennas slew at about 10° per minute, so that an appreciable fraction of the sky can be accessed on timescales of a few minutes - any prompt radio emission from a GRB might be delayed by this timescale due to propagation effects.  相似文献   

9.
Transcontinental e-VLBI observations were conducted in June 2008 with telescopes in Australia,China and Japan. Detections were made of the radio-loud quasar PKS B0727-115, which shows superluminal motion, and the intra-day variable quasar PKS B0524+034. The latter source was used as a phase reference calibrator for observations at the position of the gamma-ray burst GRB 080409, for which an upper limit to the radio emission is set. Australia Telescope Compact Array data were also used to derive a limit on the radio flux density of the GRB afterglow. These observations demonstrate the capability to form a large Australasian radio telescope network for e-VLBI, with data transported and processed in realtime over high capacity networks. This campaign represents the first step towards more regular e-VLBI observations in this region.  相似文献   

10.
By now there is no doubt that the gamma-ray bursts (GRB) have a cosmological origin. This allows to regard GRB as the most powerful known energy sources, ε∼ 1054 erg (with a total number of gamma quanta N_γ∼ 1060). A plausible mechanism of coherent synchrotron radiation (CSR) of relativistic electrons driven by a local magnetic field is studied in this paper. We consider relativistic electrons arising in the Compton scattering of a GRB in directions close to that of the ray from the source to a ground-based observer. The synchrotron pulses from Compton electrons located at different points on the line between the GRB source and the observer arrive at the observation point simultaneously. This simultaneity ensures the coherence of the detected radiation. Both molecular clouds in the host galaxy of the GRB and our own Galaxy, as well as the Earth atmosphere are assumed to be scatterers of the GRB radiation. Signals of each scatterer reach the Earth surface, and can be detected at radio wavelengths. We estimate the characteristics of this radiation. The comparison of GRB data with the corresponding information on CSR pulses offers a way to determine some global characteristics of the medium between the Earth and the GRB source.  相似文献   

11.
An energy deposition of ∼1050 erg into the exterior 10−3 M⊙ layers of a red giant is calculated to produce an optical phenomenon similar to afterglows of gamma-ray bursts (GRB) recently observed. This mechanism can be realized if a GRB is generated by some mechanism in a close binary system. In contrast to a 'hypernova' scenario for GRB recently proposed by Paczyński, this model does not require huge kinetic energy in the expanding shell to explain optical afterglows of GRB.  相似文献   

12.
A gamma-ray burst (GRB) optical photometric follow-up system at the Xinglong Observatory of National Astronomical Observatories of China (NAOC) has been constructed. It uses the 0.8-m Tsinghua-NAOC Telescope (TNT) and the 1-m EST telescope, and can au-tomatically respond to GRB Coordinates Network (GCN) alerts. Both telescopes slew rela-tively fast, being able to point to a new target field within ~ 1 min upon a request. Whenever available, the 2.16-m NAOC telescope is also used. In 2006 the system responded to 15 GRBs and detected seven early afterglows. In 2007 six GRBs have been detected among 18 follow-up observations. TNT observations of the second most distant GRB 060927 (z = 5.5) are shown, which started as early as 91 s after the GRB trigger. The afterglow was detected in the combined image of the first 19 × 20 s unfiltered exposures. This GRB follow-up system has joined the East-Asia GRB Follow-up Observation Network (EAFON).  相似文献   

13.
We present the radio observations of the afterglow from the intense cosmic gamma-ray burst GRB 030329 performed with the radio telescopes of the Institute of Applied Astronomy, Russian Academy of Sciences, at the Svetloe (λ=3.5 cm) and Zelenchuk (λ=6 cm) Observatories. The difference between the fluxes measured in two different polarization modes suggests the existence of a circular polarization in the radio afterglow from GRB 030329. However, since the measurement errors of the fluxes with different circular polarizations are large, we cannot draw a firm conclusion about its detection; we can only set an upper limit on its value. An analysis of the possible generation mechanisms for the circular polarization of the relativistic jet suggests that there is a helical magnetic field in the jet. The existence of significant flux densities at various wavelengths during a long (≥10 days) period leads us to conclude that the hydrodynamic evolution of the relativistic bow shock takes place in the stellar wind, not in the interstellar medium. We have estimated the total GRB energy (E=1051 erg) (under the assumption of isotropic radiation) and the plasma density of the stellar wind from the presupernova (n=3 cm?3). The magnetic-field strength in the relativistic jet can be estimated as B≈100 G.  相似文献   

14.
Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters.  相似文献   

15.
We computed the thermal time-dependent X-ray spectrum of a hot plasma in the vicinity of a gamma-ray burst (GRB). An allowance for time-dependent processes in a hot rarefied plasma is shown to strongly affect the observed spectrum. These computations can give an alternative explanation for the observed X-ray emission lines in the early afterglows of GRBs (e.g., GRB 011211). Our technique allows the GRB collimation angle and the environment clumpiness parameters to be independently constrained.  相似文献   

16.
Whether gamma-ray bursts are highly beamed or not is a very important question, as it has been pointed out that the beaming will lead to a sharp break in the afterglow light curves during the ultrarelativistic phase, with the breaking point determined by  Γ∼1/ θ 0  , where Γ is the bulk Lorentz factor and θ 0 is the initial half opening angle of the ejecta, and such a break is claimed to be present in the light curves of some GRBs. In this paper we will examine whether all the observed breaks in GRB afterglow light curves can be explained by jet effects. Here we present a detailed calculation of the jet evolution and emission, and have obtained a simple formula of bulk Lorentz factor evolution. We show that the light curves are very smoothly steepened by jet effect, and the shape of the light curve is determined by only one parameter –     , where E and n are the fireball energy and surrounding medium density, respectively. We find that for GRB 990123 and GRB 991216, the jet model can approximately fit their light curves, and the values of     are about 0.17 and 0.22, respectively. On the other hand, the light curves of GRB 990510, GRB 000301c, GRB 000926 and GRB 010222 cannot be fitted by the jet model, which suggests that the breaks may be caused by some other reasons, and the jet effect should be not the unique reason.  相似文献   

17.
The afterglow of GRB 050401 presents several novel and interesting features. (i) An initially faster decay in optical band than in X-rays. (ii) A break in the X-ray light curve after ∼0.06 d with an unusual slope after the break. (iii)The X-ray afterglow does not show any spectral evolution across the break while the R -band light curve does not show any break. We have modelled the observed multiband evolution of the afterglow of GRB 050401 as originating in a two-component jet, and interpreting the break in X-ray light curve as due to lateral expansion of a narrow collimated outflow which dominates the X-ray emission. The optical emission is attributed to a wider jet component. Our model reproduces all the observed features of multiband afterglow of GRB 050401. We present optical observations of GRB 050401 using the 104-cm Sampurnanand Telescope at the Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital. Results of the analysis of multiband data are presented and compared with GRB 030329, the first reported case of double jet.  相似文献   

18.
A model for gamma-ray bursters which naturally explains the main observational features of GRB is proposed. The GRB turned out to be linked by evolution with a well-known type of astrophysical object.  相似文献   

19.
We present millimetre (mm) and submillimetre (submm) photometry of a sample of five host galaxies of gamma-ray bursts (GRBs), obtained using the Max Planck Millimetre Bolometer (MAMBO2) array and Submillimetre Common-User Bolometer Array (SCUBA). These observations were obtained as part of an ongoing project to investigate the status of GRBs as indicators of star formation. Our targets include two of the most unusual GRB host galaxies, selected as likely candidate submm galaxies: the extremely red  ( R − K ≈ 5)  host of GRB 030115, and the extremely faint  ( R > 29.5)  host of GRB 020124. Neither of these galaxies is detected, but the deep upper limits for GRB 030115 impose constraints on its spectral energy distribution, requiring a warmer dust temperature than is commonly adopted for submillimetre galaxies (SMGs).
As a framework for interpreting these data, and for predicting the results of forthcoming submm surveys of Swift -derived host samples, we model the expected flux and redshift distributions based on luminosity functions of both submm galaxies and GRBs, assuming a direct proportionality between the GRB rate density and the global star formation rate density. We derive the effects of possible sources of uncertainty in these assumptions, including (1) introducing an anticorrelation between GRB rate and the global average metallicity, and (2) varying the dust temperature.  相似文献   

20.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号