首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal evolution of ducted waves under coronal conditions is studied in the framework of linearized low MHD by means of numerical simulations. Coronal loops are represented by smoothed slabs of enhanced gas density embedded within a uniform magnetic field. The simulations show that for a smoothed density profile there is an energy leakage from the slab, associated with the propagation of sausage and kink waves. Wave energy leakage in the kink wave is generally small, whereas the wave energy in sausage waves leaks more strongly for long wavelengths and smoother slabs.  相似文献   

2.
With modern imaging and spectral instruments observing in the visible, EUV, X-ray, and radio wavelengths, the detection of oscillations in the solar outer atmosphere has become a routine event. These oscillations are considered to be the signatures of a wave phenomenon and are generally interpreted in terms of magnetohydrodynamic (MHD) waves. With multiwavelength observations from ground- and space-based instruments, it has been possible to detect waves in a number of different wavelengths simultaneously and, consequently, to study their propagation properties. Observed MHD waves propagating from the lower solar atmosphere into the higher regions of the magnetized corona have the potential to provide excellent insight into the physical processes at work at the coupling point between these different regions of the Sun. High-resolution wave observations combined with forward MHD modeling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further provides us with a realistic chance to reconstruct the structure of the magnetic field in the solar atmosphere. This type of solar exploration has been termed atmospheric magnetoseismology. In this review we will summarize some new trends in the observational study of waves and oscillations, discussing their origin and their propagation through the atmosphere. In particular, we will focus on waves and oscillations in open magnetic structures (e.g., solar plumes) and closed magnetic structures (e.g., loops and prominences), where there have been a number of observational highlights in the past few years. Furthermore, we will address observations of waves in filament fibrils allied with a better characterization of their propagating and damping properties, the detection of prominence oscillations in UV lines, and the renewed interest in large-amplitude, quickly attenuated, prominence oscillations, caused by flare or explosive phenomena.  相似文献   

3.
The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi (Solar Phys. 2013, doi: 10.1007/s11207-013-0366-9 , Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.  相似文献   

4.
G. Jovanović 《Solar physics》2014,289(11):4085-4104
We derive the dispersion equation for gravito-magnetohydrodynamical (MHD) waves in an isothermal, gravitationally stratified plasma with a horizontal inhomogeneous magnetic field. Sound and Alfvén speeds are constant. Under these conditions, it is possible to derive analytically the equations for gravito-MHD waves. The high values of the viscous and magnetic Reynolds numbers in the solar atmosphere imply that the dissipative terms in the MHD equations are negligible, except in layers around the positions where the frequency of the MHD wave equals the local Alfvén or slow wave frequency. Outside these layers the MHD waves are accurately described by the equations of ideal MHD. We consider waves that propagate energy upward in the atmosphere. For the plane boundary, z=0, between two isothermal plasma regions with horizontal but different magnetic fields, we discuss the boundary conditions and derive the equations for the reflection and transmission coefficients. In the simpler case of a gravitationally stratified plasma without magnetic field, these coefficients describe the reflection and transmission properties of gravito-acoustic waves.  相似文献   

5.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

6.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

7.
Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.  相似文献   

8.
MHD waves and oscillations in sharply structured magnetic plasmas have been studied for static and steady systems in the thin tube approximation over many years. This work will generalize these studies by introducing a slowly varying background density in time, in order to determine the changes to the wave parameters introduced by this temporally varying equilibrium, i.e. to investigate the amplitude, frequency, and wavenumber for the kink and higher order propagating fast magnetohydrodynamic wave in the leading order approximation to the WKB approach in a zero-β plasma representing the upper solar atmosphere. To progress, the thin tube and over-dense loop approximations are used, restricting the results found here to the duration of a number of multiples of the characteristic density change timescale. Using such approximations it is shown that the amplitude of the kink wave is enhanced in a manner proportional to the square of the Alfvén speed, $V_{\mathrm{A}}^{2}$ . The frequency of the wave solution tends to the driving frequency of the system as time progresses; however, the wavenumber approaches zero after a large multiple of the characteristic density change timescale, indicating an ever increasing wavelength. For the higher order fluting modes the changes in amplitude are dependent upon the wave mode; for the m=2 mode the wave is amplified to a constant level; however, for all m≥3 the fast MHD wave is damped within a relatively small multiple of the characteristic density change timescale. Understanding MHD wave behavior in time-dependent plasmas is an important step towards a more complete model of the solar atmosphere and has a key role to play in solar magneto-seismological applications.  相似文献   

9.
The solar atmosphere, from the photosphere to the corona, is structured by the presence of magnetic fields. We consider the nature of such inhomogeneity and emphasis that the usual picture of hydromagnetic wave propagation in a uniform medium may be misleading if applied to a structured field. We investigate the occurrence of magnetoacoustic surface waves at a single magnetic interface and consider in detail the case where one side of the interface is field-free. For such an interface, a slow surface wave can always propagate. In addition, a fast surface wave may propagate if the field-free medium is warmer than the magnetic atmosphere.  相似文献   

10.
G. B. Laing  P. M. Edwin 《Solar physics》1995,157(1-2):103-119
The damping of ducted, fast, magnetohydrodynamic (MHD) waves by ion viscosity and electron heat conduction in a radiating, optically thin, warm, structured atmosphere has been evaluated. Dissipation is more effective in a warm plasma than in a cold one but, for waves ducted by solar coronal loops, dissipation is only efficient if the periods of the waves are shorter than a few tens of seconds and only if the background magnetic field is less than about 15 G. It appears that MHD waves of longer periods and in stronger magnetic fields will survive the dissipative mechanisms considered here and may be manifest as observable coronal oscillations.  相似文献   

11.
Murawski  K.  Aschwanden  M. J.  Smith  J. M. 《Solar physics》1998,179(2):313-326
Impulsively generated magnetohydrodynamic waves in solar coronal loops, with arbitrary plasma , are studied numerically by a flux-corrected transport algorithm. Numerical results show that the total reflection which occurs in the region of low Alfvén speed leads to trapped fast kink magnetosonic waves. These waves propagate along the slab and exhibit periodic, quasi-periodic, and decay phases. As a consequence of the difference in wave propagation speeds, the time signatures of the slow magnetosonic waves are delayed in time in comparison to the time signatures of the fast magnetosonic and Alfvén waves. An interaction between the waves can generate a longer lasting and complex quasi-periodic phase of the fast wave. We discuss also the observational detectability of such MHD waves in optical, radio, and soft X-ray wavelenghts.  相似文献   

12.
P. S. Cally 《Solar physics》1987,108(1):183-189
It has been widely conjectured that magnetohydrodynamic (MHD) waves may provide the extra momentum or energy required to explain the high speed solar wind streams that originate in coronal holes. Although the magnetic structuring inherent in this problem has been incorporated into models of the bulk flow, this is not generally true of the associated treatments of wave propagation. In particular, as pointed out by Davila (1985), we might generally expect the magnetic geometry to substantially modify those waves whose wavelength is comparable to the hole width. Using both a geometrical optics and an eigenmode approach, Davila addressed the question of wave propagation in a simple uniform width flux slab model of a coronal hole and concluded
  1. the hole may act as a ‘leaky wave guide’, i.e., waves travelling along it may leak into the surrounding corona, but
  2. the group velocity of waves with periods in a physically relevant range (around 100 s) is downward, indicating that such waves cannot carry energy into the solar wind and therefore cannot be driving it.
We agree with (i) but argue that (ii) results from a mistaken interpretation of a dispersion relation, and is incorrect. Furthermore, we apply the cylindrical tube leaky wave approach of Cally (1986) to a simple coronal hole model, and find two wavetypes with substantial upward energy fluxes. However, of these, we argue that the so-called ‘trig modes’ (geometry modified fast waves) leak so profusely that they are unable to transport energy over the distance required; the non-axisymmetric ‘thin tube’ modes, though, do not suffer from this disability.  相似文献   

13.
This paper deals with a rather general class of magnetoatmospheres — media for which the restoring forces of buoyancy, compressibility and magnetic tension/pressure are important in sustaining wave motion. The magnetic field has the general form (B 0(z), 0,0) and there is also an aligned shear flow (U 0(z), 0, 0) present. After discussion of the equilibrium and stability of such systems, and certain mathematical properties of a particular system (an isothermal atmosphere with uniform magnetic field, of interest in solar physics), theory is developed which enables expressions to be written down for the mechanical wave energy flux associated with wave motion due to a transient source. These analytic expressions are very general and contain contributions from the continuous and discrete frequency spectra, corresponding respectively to freely propagating and trapped (or surface) waves. These fluxes are evaluated for various ranges of magnetic field, horizontal wavenumber, characteristic source times and frequency, for a simple constant-parameter atmosphere. The source is taken to be a transient fluctuation of the lower boundary, (modelling convective overshoot) which is taken to be located at the level 5000=0.08 in the solar atmosphere. The relative distribution of wave energy flux in the various modes is discussed in the context of solar physics parameters. The possible significance of leaky modes arising from supergranular or other flow, for the local flux balance in the solar chromosphere is outlined.  相似文献   

14.
The solar corona, modeled by a low-, resistive plasma slab, sustains MHD wave propagations due to footpoint motions in the photosphere. Simple test cases are undertaken to verify the code. Uniform, smooth and steep density, magnetic profile and driver are considered. The numerical simulations presented here focus on the evolution and properties of the Alfvén, fast and slow waves in coronal loops. The plasma responds to the footpoint motion by kink or sausage waves depending on the amount of shear in the magnetic field. The larger twist in the magnetic field of the loop introduces more fast-wave trapping and destroys initially developed sausage-like wave modes. The transition from sausage to kink waves does not depend much on the steep or smooth profile. The slow waves develop more complex fine structures, thus accounting for several local extrema in the perturbed velocity profiles in the loop. Appearance of the remnants of the ideal singularities characteristic of ideal plasma is the prominent feature of this study. The Alfvén wave which produces remnants of the ideal x –1 singularity, reminiscent of Alfvén resonance at the loop edges, becomes less pronounced for larger twist. Larger shear in the magnetic field makes the development of pseudo-singularity less prominent in case of a steep profile than that in case of a smooth profile. The twist also causes heating at the edges, associated with the resonance and the phase mixing of the Alfvén and slow waves, to slowly shift to layers inside the slab corresponding to peaks in the magnetic field strength. In addition, increasing the twist leads to a higher heating rate of the loop. Remnants of the ideal log ¦x¦ singularity are observed for fast waves for larger twist. For slow waves they are absent when the plasma experiences large twist in a short time. The steep profiles do not favour the creation of pseudo-singularities as easily as in the smooth case.  相似文献   

15.
We consider a horizontally stratified isothermal model of the solar atmosphere, with vertical and uniform B 0, and v A 2 v s 2 . The equations of motion are linearized about a background which is in hydrostatic equilibrium. A homogeneous wave equation results for the motions perpendicular to B 0; this wave equation is similar to the equation for the MHD fast mode. On the other hand, the equation for the parallel motions is inhomogeneous, containing driving terms which arise from the presence of the fast mode; the homogeneous form of this equation is identical to the equation describing vertically-propagating gravity-modified acoustic waves. We demonstrate that a resonance can exist between the (driving) fast wave and the (driven) gravity-modified acoustic wave, in such a way that very large parallel velocities can be driven by small perpendicular velocities. Applications of this resonance to solar spicules, jets, and other phenomena are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The radiative damping of trapped gravity waves in an optically thin atmosphere is studied for a stratified Boussinesq fluid. The character of the atmospheric eigenmodes depends on the distribution of the Brunt-Väisälä frequency N and the radiative relaxation time . The calculations for simple layer models show that if N is large over some finite fraction of the trapping region, then modes of long lifetime can exist. In order to suppress gravity waves entirely, it is necessary that N < 1 over the entire trapping region. Qualitative application of the results to the solar atmosphere leads to the conclusion that gravity wave eigenmodes of the solar atmosphere, although damped, are by no means eliminated by radiative effects.  相似文献   

17.
The direct propagation of acoustic waves, driven harmonically at the solar photosphere, into the three-dimensional solar atmosphere is examined numerically in the framework of ideal magnetohydrodynamics. It is of particular interest to study the leakage of 5-minute global solar acoustic oscillations into the upper, gravitationally stratified and magnetised atmosphere, where the modelled solar atmosphere possesses realistic temperature and density stratification. This work aims to complement and bring further into the 3D domain our previous efforts (by Erdélyi et al., 2007, Astron. Astrophys. 467, 1299) on the leakage of photospheric motions and running magnetic-field-aligned waves excited by these global oscillations. The constructed model atmosphere, most suitable perhaps for quiet Sun regions, is a VAL IIIC derivative in which a uniform magnetic field is embedded. The response of the atmosphere to a range of periodic velocity drivers is numerically investigated in the hydrodynamic and magnetohydrodynamic approximations. Among others the following results are discussed in detail: i) High-frequency waves are shown to propagate from the lower atmosphere across the transition region, experiencing relatively low reflection, and transmitting most of their energy into the corona; ii) the thin transition region becomes a wave guide for horizontally propagating surface waves for a wide range of driver periods, and particularly at those periods that support chromospheric standing waves; iii) the magnetic field acts as a waveguide for both high- and low-frequency waves originating from the photosphere and propagating through the transition region into the solar corona. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

18.
The magnetosonic modes of magnetic plasma structures in the solar atmosphere are considered taking into account steady flows of plasma in the internal and external media and using a slab geometry. The investigation brings nearer the theory of magnetosonic waveguides, in such structures as coronal loops and photospheric flux tubes, to realistic conditions of the solar atmosphere. The general dispersion relation for the magnetosonic modes of a magnetic slab in magnetic surroundings is derived, allowing for field-aligned steady flows in either region. It is shown that flows change both qualitatively and quantitatively the characteristics of magnetosonic modes. The flow may lead to the appearance of a new type of trapped mode, namelybackward waves. These waves are the usual slab modes propagating in the direction opposite to the internal flow, but advected with the flow. The disappearance of some modes due to the flow is also demonstrated.The results are applied to coronal and photospheric magnetic structures. In coronal loops, the appearance of backward slow body waves or the disappearance of slow body waves, depending upon the direction of propagation, is possible if the flow speed exceeds the internal sound speed ( 300 km s–1). In photospheric tubes, the disappearance of fast surface and slow body waves may be caused by an external downdraught of about 3 km s–1.  相似文献   

19.
Theories of solar flares based on the storage of energy (usually as magnetic energy) in the solar atmosphere are shown to be incompatible with observational data.The sunspot energy deficit and the photospheric faculae both involve energy fluxes comparable with the flare requirement ( 3 × 1029 erg s–1). Both also require a subsurface system of waves or oscillations, perhaps those discussed by Danielson and Savage and by Wilson. The flare model proposed is based on a temporary diversion of this energy carried by Alfvén waves through spots and magnetic elements or micro-pores; the calculated plasma perturbation velocity in the umbra is about 6 km s–1 for a major flare.In the atmosphere the wave energy divides into two parts to produce the cool, stationary optical flare and the particle flare. The first part is dissipated around flux tubes which are mainly horizontal in the chromosphere and which tend to concentrate along the magnetic neutral line (B = 0). Each tube vibrates individually as a taut wire in a viscous fluid, to excite the fluid just outside the tube. The second part of the energy emerges along tubes mainly vertical in the chromosphere and is converted to shock waves in the corona and then to particle energy for the radio and X-ray flare and the blast wave.The model includes white-light faculae, quasi-permanent X-ray and fast-particle emissions, sympathetic flares and surges. An unambiguous test would be provided by observations of plasma motions of a few kilometres per second in spots and micro-pores.  相似文献   

20.
Magnetohydrodynamic(MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introduction of transverse structuring into models for the corona modifies the behavior of MHD waves through processes such as dispersion and mode coupling. Exploiting our understanding of MHD waves with the diagnostic tool of coronal seismology relies upon the development of sufficiently detailed models to account for all the features in observations. The development of realistic models appropriate for highly structured and dynamical plasmas is often beyond the domain of simple mathematical analysis and so numerical methods are employed. This paper reviews recent numerical results for seismology of the solar corona using MHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号