首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

2.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

3.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

4.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

5.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

6.
Caging and a mark–recapture design were used to estimate the growth rate of the brittle, infaunal bivalve Soletellina alba in the Hopkins River estuary. The growth of both caged and uncaged individuals was monitored at three sites near the mouth of the estuary over 180 days. Growth rates did not differ for caged and uncaged bivalves, or for bivalves subject to different amounts of handling, or between sites. Growth did differ between consecutive time intervals, which was attributable to negligible growth occurring during the colder months of autumn/winter. Comparisons of the condition (as indicated by total mass for length3) of S. alba were inconsistent between sites for caged and uncaged bivalves and for those subject to different amounts of handling. Soletellina alba is a rapidly growing bivalve with mean growth rates for the three time intervals being 0.04±0.002 mm day−1 in summer, 0.02±0.001 mm day−1 in autumn and 0.03±0.001 mm day−1 from summer to winter. Using existing literature, it was shown that a significant relationship exists between maximum shell length and onset of sexual maturity in bivalve molluscs. This relationship predicts that S. alba should reach the onset of sexual maturity at 15.8 mm length. Therefore, it appears that it may be possible for juvenile S. alba (<1 mm) to grow, reach sexual maturity and reproduce in between annual mass-mortality events caused by winter flooding.  相似文献   

7.
In September 1994 and 1995, scientists from the Australian Institute of Marine Science (AIMS) and the Australian Geological Survey Organization (AGSO) conducted surveys aboard the RV Lady Basten to determine the dispersion, fates and effects of produced formation water (PFW) discharged from the ‘ Harriet A ’ oil production platform near the Montebello Islands. This report is one of four related papers and describes the non-volatile hydrocarbon chemistry studies. The dispersion of the PFW into dissolved and particulate fractions of seawater were measured using moored high volume water samplers, surface screen samplers and moored and drifting sediment traps. Bio-accumulation was studied using transplanted oysters, and dispersion measured into sediment with benthic grabs.Results showed enrichment in non-volatile hydrocarbons in surface microlayer samples to a distance of 1·8 km in the direction of tidal flow. Concentrations in surface microlayers near the platform varied by an order of magnitude and corresponded to when a surface slick was visible or not visible. Concentrations of oil in seawater ranged from 2·0 to 8·5 μg l−1at near stations to 1·3 μg l−1at 1·8 km. Water column samples showed the processes of desorption from particles for soluble components occur within the range of 1·8 km. Most particulate hydrocarbons drop out of suspension within c. 1 to 2 km from the platform. Fluxes of particulate hydrocarbons through the water column at c. 1 km, as estimated by moored sediment traps in 1995, were 138 to 148 ng cm−2day−1. A decrease in sediment concentrations within c. 1 km of the platform was measured as 2·45±1·29 μg g−1dry wt (n=15) in 1994 to 0·86±0·54 μg g−1dry wt (n=21) in 1995, after the platform installed a centrifugal separator in the discharge treatment process. Thus the residence time of this relatively low molecular weight oil was estimated in the coarse aerobic sands surrounding the platform to be less than one year. Oysters suspended near the platform bio-accumulated hydrocarbons and other lipophilic organics in their tissues. Uptake rates and bio-concentration factors of hydrocarbons indicated potential toxicity at the near-field stations within c. 1 km radius.A mass balance was constructed to show the partitioning of the input of hydrocarbons from the PFW into the surrounding marine ecosystem. The rates of dissipation processes were estimated as follows: dilution from tidal currents>degradation in the water column>sedimentation>evaporation. The calculations based on maximum concentrations measured in the environmental samples accounted for 85% of the daily input suspended within a 1 km radius.It is estimated that the potential zone of toxic influence in the water column extends to a distance of approximately 1 km. Concentrations of oil in sediments were too low to indicate potential toxicity. By the collaborative application of oceanographic and geochemical techniques to marine environmental problems, we endeavour to provide effective feedback to the oil industry to gauge the effectiveness of their operational strategies in minimizing impact in these pristine regions.  相似文献   

8.
In situ measurements of ammonium and carbon dioxide fluxes were performed using benthic chambers at the end of spring and the end of summer in two soft-bottom Abra alba communities of the western English Channel (North Brittany): the muddy sand community (5 m, about 10% of surface irradiance) and the fine-sand community (19 m, about 1% of surface irradiance). High rates of ammonium regeneration were measured in the two communities at the end of summer (296.03±40.07 and 201.7±62.74 μmolN m−2 h−1, respectively) as well as high respiration rates (2.60±0.94 and 2.23±0.59 mmolC m−2 h−1, respectively). Significant benthic gross primary production (up to 6.11 mmolC m−2 h−1) was measured in the muddy sand community but no benthic primary production was measured in the fine-sand community. It suggests that microphytobenthic production values used in simulations previously published for these two communities were overestimated while values of community respiration were underestimated. The study confirms that this benthic system is heterotrophic and strengthens the idea that an important pelagic-benthic coupling is required for the functioning in such coastal ecosystems.  相似文献   

9.
The subarctic North Pacific is one of the three major high nitrate low chlorophyll (HNLC) regions of the world. The two gyres, the NE and the NW subarctic Pacific gyres dominate this region; the NE subarctic Pacific gyre is also known as the Alaska Gyre. The NE subarctic Pacific has one of the longest time series of any open ocean station, primarily as a result of the biological sampling that began in 1956 on the weathership stationed at Stn P (50°N, 145°W; also known as Ocean Station Papa (OSP)). Sampling along Line P, a transect from the coast (south end of Vancouver Island) out to Stn P has provided valuable information on how various parameters change along this coastal to open ocean gradient. The NW subarctic Pacific gyre has been less well studied than the NE gyre. This review focuses mainly on the NE gyre because of the large and long term data set available, but makes a brief comparison with the NW gyre. The NE gyre has saturating NO3 concentrations all year (winter = about 16 μM and summer = about 8 μM), constantly very low chlorophyll (chl) (usually <0.5 mg m−3) which is dominated by small cells (<5 μm). Primary productivity is low (about 300–600 mg C m−2 d−1 and varies little (2 times) seasonally. Annual primary productivity is 3 to 4 times higher than earlier estimates ranging from 140 to 215 g C m−2 y−1. Iron limits the utilization of nitrate and hence the primary productivity of large cells (especially diatoms) except in the winter when iron and light may be co-limiting. There are observations of episodic increases in chl above 1 mg m−3, suggesting episodic iron inputs, most likely from Asian dust in the spring/early summer, but possibly from horizontal advection from the Alaskan Gyre in summer/early fall. The small cells normally dominate the phytoplankton biomass and productivity, and utilize the ammonium produced by the micrograzers. They do not appear to be Fe-limited, but are controlled by microzooplankton grazers. The NW Subarctic Gyre has higher nutrient concentrations and a shallower summer mixed depth and photic zone than Stn P in the NE gyre. Chl concentrations tend to be higher (0.5 to 1.5 μg L−1) than Stn P, but primary productivity in the summer is similar to Stn P (600 mg C m−2 d−1). There are no seasonal data from this gyre. Iron enrichment experiments in October, resulted in an increase in chl (mainly the centric diatom Thalassiosira sp.) and a draw down of nitrate, suggesting that large phytoplankton are Fe-limited, similar to Stn P.  相似文献   

10.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   

11.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

12.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

13.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

14.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

15.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

16.
Twenty-two different species of Arctic brown, red and green macroalgae, collected in the Kongsfjord at Ny-Ålesund (Spitsbergen), were incubated under polar conditions and investigated for their release of volatile halogenated organic compounds (VHOC). Bromoform, dibromomethane, dibromochloromethane, bromodichloromethane, 1,2-dibromoethane, diiodomethane and chloroiodomethane have been identified and their net releases during incubations were determined. Generally, brown and green macroalgae showed higher VHOC release, while red macroalage had only low release. Bromoform was released in relatively large quantities from all species studied, with the highest release observed from the brown algae Dictyosyphon foeniculaceus (0.3 μg g−1 wet algal weight day−1) and Laminaria saccharina (0.15 μg g−1 wet algal weight day−1), and from the green algae Monostroma arcticum (0.3 μg g−1 wet algal weight day−1) and Blidingia minima (0.27 μg g−1 wet algal weight day−1). Dibromomethane, diiodomethane, dibromochloromethane and 1,2-dibromoethane showed lower net release during the incubations. The net release of chloroiodomethane and bromodichloromethane was very low for the most algae species investigated. Based on the distribution of these algae in the Arctic environment, Dictyosiphon foeniculaceus and Laminaria saccharina may be important sources for VHOC because of high release and high biomass. Release of VHOC could be detected from all parts of the thallus of the macroalga. This may provide some evidence for a possible role of VHOC production as a chemical protection mechanism in algae.  相似文献   

17.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

18.
Seabed distributions of 234Th excess (Thxs) were determined in the upper centimetres of 38 sediment cores from the north-western Iberian Margin, sampled from 41–44°N and from 9–12°E during five OMEX II cruises. Three main areas, a northern, and at 42°38 and 42°N, were investigated during representative seasons (winter, spring and summer). Low 234Thxs activities in summer 1998 (18–252 Bq per kg) were similar to those measured in summer 1997. In winter 234Th also showed moderate excess. The highest values were observed in spring with surface 234Thxs values up to 402 Bq kg−1. Maximum penetration depths of 234Thxs ranged from a few mm to 3 cm. 234Thxs activities always showed a smooth decrease with depth, without any evidence of non-local mixing. Thus particle mixing on a short time scale can be described as an eddy diffusive process, and bioturbation rates, calculated on this basis, range from 0.02 to 3.07 cm2 per year. Data (activities, inventories, bioturbation rates) are discussed in order to relate the observed surface and down-core variations to spatial and seasonal trends. Using 234Thxs data in sediment as a substitute for sediment trap estimates, particle fluxes were calculated from 234Thxs inventories. The range of 234Th-derived particle fluxes for the north-western Iberian Margin is 16–1418 mg.m−2.d−1. Mean values indicate a gradual decrease of mass fluxes from the shelf to the open ocean. On a 100-day scale, the northern area (43–44°N) represents a low sedimentation regime. Further south, around 42°–43°N, particle inputs are more important. On the middle slope, around 1000 to 2000 m depth, high inventories and bioturbation rates indicate enhanced, and probably organic-rich, particle fluxes to the seafloor, particularly in spring.  相似文献   

19.
Spring profiles of microbial production derived from the dark incorporation of tritiated leucine and tritiated thymidine in the northwest Mediterranean show an exponential decline with depth. Assuming this to represent a steady-state balance between microbial respiration and the downward flux of carbon, the downward flux is estimated as (1−/)p/b, where p is the microbial production, their gross growth efficiency and b the coefficient of exponential decline with depth. Summer profiles, ranging over about 3° of latitude and 4° of longitude, were well fitted by a two-component exponential decline, suggesting two distinct microbial substrates. Values of b for the more rapidly declining component varied between 0.01 and 0.06 m−1 according to location. In the case of the slower component, b was estimated as 0.002 m−1, and did not vary significantly over the region. Estimated fluxes of carbon at the surface are 123–335 mg m−2 d−1 for the fast and 95 mg m−2 d−1 for the slow component. Below about 200 m, carbon flux is dominated by the slow component. Flux estimates are compatible with flux estimates from sediment traps in the same region. The observed changes between the spring and summer profiles, combined with the horizontal homogeneity of the summer profiles below 200 m, are consistent with a downward transport of about 5–10 m d–1, implying a significant dispersive component to the observed fluxes.  相似文献   

20.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号