首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

2.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   

3.
Here we describe high‐precision molybdenum isotopic composition measurements of geological reference materials, performed using multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS). Purification of Mo for isotopic measurements was achieved by ion exchange chromatography using Bio‐Rad AG® 1‐X8 anion exchange resin. Instrumental mass bias was corrected using 100Mo‐97Mo double spiking techniques. The precision under intermediate measurement conditions (eighteen measurement sessions over 20 months) in terms of δ98/95Mo was 0.10‰ (2s). The measurement output was approximately four times more efficient than previous techniques, with no compromise in precision. The Mo isotopic compositions of seven geochemical reference materials, seawater (IAPSO), manganese nodules (NOD‐P‐1 and NOD‐A‐1), copper‐molybdenum ore (HV‐2), basalt (BCR‐2) and shale (SGR‐1b and SCo‐1), were measured. δ98/95Mo values were obtained for IAPSO (2.25 ± 0.09‰), NOD‐P‐1 (?0.66 ± 0.05‰), NOD‐A‐1 (?0.48 ± 0.05‰), HV‐2 (?0.23 ± 0.10‰), BCR‐2 (0.21 ± 0.07‰), SCo‐1 (?0.24 ± 0.06‰) and SGR‐1b (0.63 ± 0.02‰) by calculating δ98/95Mo relative to NIST SRM 3134 (0.25‰, 2s). The molybdenum isotopic compositions of IAPSO, NOD‐A‐1 and NOD‐P‐1 obtained in this study are within error of the compositions reported previously. Molybdenum isotopic compositions for BCR‐2, SCo‐1 and SGR‐1b are reported for the first time.  相似文献   

4.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

5.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

6.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

7.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   

8.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

9.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   

10.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

11.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   

12.
The demand for large and reliable data sets on isotopic composition has increased in geochemistry and environmental sciences over recent years. We present an automated ion chromatographic separation method using a robotic pipetting arm, termed ‘ChemCobOne’, to reduce sample separation time. Its performance was tested for lithium isotope separation in geological reference materials using a single‐step separation with HCl (0.2 mol l?1) and a 2 ml resin volume. This refined lithium purification method does not forfeit precision, accuracy or purity compared with manual sample processing. In addition, a δ7Li value for NASS‐6 of 30.99 ± 0.50‰ (2s) (95% CI = 0.14‰, n = 44) was determined and the first δ7Li values for the granite rock reference material GS‐N (?0.57 ± 0.25‰ (2s), 95% CI = 0.15‰, n = 15), and for the soil reference material NIST SRM 2709a (?0.37 ± 0.67‰ (2s), 95% CI = 0.15‰, n = 63) are proposed.  相似文献   

13.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

14.
The interest in variations of barium (Ba) stable isotope amount ratios in low and high temperature environments has increased over the past several years. Characterisation of Ba isotope ratios of widely available reference materials is now required to validate analytical procedures and to allow comparison of data obtained by different laboratories. We present new Ba isotope amount ratio data for twelve geological reference materials with silicate (AGV‐1, G‐2, BHVO‐1, QLO‐1, BIR‐1, JG‐1a, JB‐1a, JR‐1 and JA‐1), carbonate (IAEA‐CO‐9) and sulfate matrices (IAEA‐SO‐5 and IAEA‐SO‐6) relative to NIST SRM 3104a. In addition, two artificially fractionated in‐house reference materials BaBe12 and BaBe27 (δ137/134Ba = ?1.161 ± 0.049‰ and ?0.616 ± 0.050‰, respectively) are used as quality control solutions for the negative δ‐range. Accuracy of our data was assessed by interlaboratory comparison between the University of Bern and the United States Geological Survey (USGS). Data were measured by MC‐ICP‐MS (Bern) and TIMS (USGS) using two different double spikes for mass bias correction (130Ba–135Ba and 132Ba–136Ba, respectively). MC‐ICP‐MS measurements were further tested for isobaric and non‐spectral matrix effects by a number of common matrix elements. The results are in excellent agreement and suggest data accuracy.  相似文献   

15.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

16.
In this study, two new laboratory reference solutions for testing Cu isotopic composition were established and investigated. Two commercially available pure copper products, copper plate and copper wire, were dissolved in 1000‐ml Teflon® bottles, to produce 200 μg ml?1 stock solutions (hereafter referred to as NWU‐Cu‐A and NWU‐Cu‐B), and cryogenically stored. The Cu isotopic compositions of the two samples were determined in three different laboratories using multi‐collector inductively coupled plasma‐mass spectrometry, and the Cu isotopic compositions obtained from the standard‐sample bracketing method were consistent within the two standard deviation (2s) range. The Cu isotopic compositions of the NWU‐Cu‐A and NWU‐Cu‐B standard solutions were δ65Cu = +0.91 ± 0.03‰ (2s,= 42) and δ65Cu = ?0.05 ±0.03‰ (2s,= 49), respectively, relative to the reference material NIST SRM 976.  相似文献   

17.
Recent analytical developments in germanium stable isotope determination by multicollector ICP‐MS have provided new perspectives for the use of Ge isotopes as geochemical tracers. Here, we report the germanium isotope composition of the NIST SRM 3120a elemental reference solution that has been calibrated relative to internal isotopic standard solutions used in the previous studies. We also intercalibrate several geological reference materials as well as geological and meteoritic samples using different techniques, including online hydride generation and a spray chamber for sample introduction to MC‐ICP‐MS, and different approaches for mass bias corrections such as sample–calibrator bracketing, external mass bias correction using Ga isotopes and double‐spike normalisation. All methods yielded relatively similar precisions at around 0.1‰ (2s) for δ74/70Ge values. Using igneous and mantle‐derived rocks, the bulk silicate Earth (BSE) δ74/70Ge value was re‐evaluated to be 0.59 ± 0.18‰ (2s) relative to NIST SRM 3120a. Several sulfide samples were also analysed and yielded very negative values, down to ?4.3‰, consistent with recent theoretical study of Ge isotope fractionation. The strong heavy isotope depletion in ore deposits also contrasts with the generally positive Ge isotope values found in many modern and ancient marine sediments.  相似文献   

18.
We report an approach for the accurate and reproducible measurement of boron isotope ratios in natural waters using an MC‐ICP‐MS (Neptune) after wet chemistry sample purification. The sample matrix can induce a drastic shift in the isotopic ratio by changing the mass bias. It is shown that, if no purification is carried out, the direct measurement of a seawater diluted one hundred times will induce an offset of ?7‰ in the isotopic ratio, and that, for the same concentration, the greater the atomic mass of the matrix element, the greater the bias induced. Whatever the sample, it is thus necessary to remove the matrix. We propose a method adapted to water samples allowing purification of 100 ng of boron with a direct recovery of boron in 2 ml of 3% v/v HNO3, which was our working solution. Boron from the International Atomic Energy Agency IAEA‐B1 seawater reference material and from the two groundwater reference materials IAEA‐B2 and IAEA‐B3, was chemically purified, as well as boron from the certified reference material NIST SRM 951 as a test. The reproducibility of the whole procedure (wet chemistry and MC‐ICP‐MS measurement) was ± 0.4‰ (2s). Accuracy was verified by comparison with positive‐TIMS values and with recommended values. Seawater, being homogeneous for boron isotope ratios, is presently the only natural water material that is commonly analysed for testing accuracy worldwide. We propose that the three IAEA natural waters could be used as reference samples for boron isotopes, allowing a better knowledge of their isotopic ratios, thus contributing to the certification of methods and improving the quality of the boron isotopic ratio measurements for all laboratories.  相似文献   

19.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

20.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号