首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W and Tl were determined by isotope dilution sector field ICP‐MS in the same sample aliquot of reference materials using HF‐HNO3 digestion in PFA beakers in pressure bombs and glassy carbon vessels in a high‐pressure asher (HPA‐S) for comparison. Additionally, Bi was determined by internal standardisation relative to Tl. Because isobaric and oxide interferences pose problems for many of these elements, efficient chromatographic separation methods in combination with an Aridus desolvator were employed to minimise interference effects. Repeated digestion and measurement of geological reference materials (BHVO‐1, BHVO‐2, SCo‐1, MAG‐1, MRG‐1 and UB‐N) gave results with < 5% relative intermediate precision (1s) for most elements, except Bi. Replicates of NIST SRM 612 glass digested on a hot plate were analysed by the same methods, and the results agree with reference values mostly within 2% relative deviation. Data for the carbonaceous chondrites Allende, Murchison, Orgueil and Ivuna are also reported. Digestion in a HPA‐S was as efficient as in pressure bombs, but some elements displayed higher blank levels following HPA‐S treatment. Pressure bomb digestion yielded precise data for volatile S, Se and Te, but may result in high blanks for W.  相似文献   

2.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   

3.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

4.
The aim of this study was to improve the quality of laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) determination of phosphorus in crystalline quartz. Over the last decade, the Geological Survey of Norway has routinely performed trace element determinations on quartz from both operating and potential quartz deposits by LA‐ICP‐MS. The determined phosphorus concentrations were, with but few exceptions, consistently within the range of 10 to 30 μg g?1, results that seemed to be both too high and too consistent. The multi‐material calibration curve obtained from a suite of reference materials (NIST SRM 610, 612, 614, 1830, BAM No. 1 amorphous SiO2 glass) did not define a precise regression line. Published phosphorus concentrations for the reference materials are poorly constrained and the observed dispersions along the multi‐material calibration curve suggest that some of the reference values may be inaccurate. Furthermore, the calibration curve did not pass through the origin of the [(cps 31P/cps 30Si) · cone. Si] vs. P concentration diagram; thus, in addition to the uncertainties of the literature values of phosphorus, it is difficult to define the calibration curve. Three reference materials (NIST SRM 614, 1830, synthetic quartz KORTH) were sent for phosphorus accelerator implantation, providing an independent and accurate (± 3%) approach for determining phosphorus concentrations in crystalline quartz. The intrinsic phosphorus concentrations of the three implanted samples plus those for NIST SRM 610 and 612 were determined by secondary ion mass spectrometry (SIMS), yielding new phosphorus values for NIST SRM 610, 612, 614 and 1830. Using these new values resulted in a better defined LA‐ICP‐MS calibration curve. However, the source of the ICP‐MS related background could not be defined, such that it must still be empirically corrected for.  相似文献   

5.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

6.
Properly combining highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data, obtained by isotope dilution, with corresponding 187Os/188Os and 186Os/188Os measurements of rocks requires efficient digestion of finely‐ground powders and complete spike‐sample equilibration. Yet, because of the nature of commonly used methods for separating Os from a rock matrix, hydrofluoric acid (HF) is typically not used in such digestions. Consequently, some silicates are not completely dissolved, and HSE residing within these silicates may not be fully accessed. Consistent with this, some recent studies of basaltic reference materials (RMs) have concluded that an HF‐desilicification procedure is required to fully access the HSE (Ishikawa et al. (2014) Chemical Geology, 384, 27–46; Li et al. (2015) Geostandards and Geoanalytical Research, 39, 17–30). Highly siderophile element abundance and Os isotope studies of intraplate basalts typically target samples with a range of MgO contents (< 8 to > 18% m/m, or as mass fractions, < 8 to > 18 g per 100 g), in contrast to the lower MgO mass fractions (< 10 g per 100 g) of basalt and diabase RMs (i.e., BIR‐1, BHVO‐2, TDB‐1). To investigate the effect of HF‐desilicification on intraplate basalts, experiments were performed on finely ground Azores basalts (8.1–17 g per 100 g MgO) using a ‘standard acid digestion’ (2:1 mixture of concentrated HNO3 and HCl), and a standard acid digestion, followed by HF‐desilicification. No systematic trends in HSE abundances were observed between data obtained by standard acid digestion and HF‐desilicification. Desilicification procedures using HF do not improve liberation of the HSE from Azores basalts, or some RMs (e.g., WPR‐1). We conclude that HF‐desilicification procedures are useful for obtaining total HSE contents of some young lavas, but this type of procedure is not recommended for studies where Re‐Pt‐Os chronological information is desired. The collateral effect of a standard acid digestion to liberate Os, followed by HF‐desilicification to obtain Re and Pt abundances in samples, is that the measured Re/Os and Pt/Os may not correspond with measured 187Os/188Os or 186Os/188Os.  相似文献   

7.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

8.
A method was developed for the determination of platinum‐group elements (PGE) in geological samples by isotope dilution‐inductively coupled plasma‐mass spectrometry combined with sulfide fire assay preconcentration. Samples were fused and PGE analytes were concentrated in sulfide buttons. The buttons were dissolved using HCl leaving PGE analytes in insoluble residues, which were digested in HNO3 and simultaneously processed for the distillation of Os. The remaining solutions were further prepared for the purification of Ru, Rh, Pd, Ir and Pt using a tandem assembly of cation and Ln resin columns. The eluents were directly analysed by membrane desolvation‐ICP‐MS. Ruthenium, Pd, Os, Ir and Pt were determined by isotope dilution, whereas Rh was determined by conventional reference material calibration combined with 193Ir as the internal standard element. The method was validated using a series of PGE reference materials, and the measurement data were consistent with the recommended and the literature values. The measurement precision was better than 10% RSD. The procedural blanks were 0.121 ng for Ru, 0.204 for Rh, 0.960 ng for Pd, 0.111 ng for Os, 0.045 ng for Ir and 0.661 ng for Pt, and the limits of detection (3s) were 0.011 ng g?1 for Ru, 0.008 ng g?1 for Rh, 0.045 ng g?1 for Pd, 0.009 ng g?1 for Os, 0.006 ng g?1 for Ir and 0.016 ng g?1 for Pt when a test portion mass of 10 g was used. This indicates that the proposed method can be used for the determination of trace amounts of PGE in geological samples.  相似文献   

9.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

10.
Excellent agreement was noted in the concentration of major and trace elements in five NIST (National Institute for Science and Technology) soil reference materials (NIST SRM 2586, 2587, 2709a, 2710a and 2711a) between measurement results from wavelength dispersive‐XRF and ICP‐MS from two independent laboratories, and NIST certificate of analysis and literature data. We describe the variability in concentrations of up to forty‐nine elements (plus loss on ignition) and provide values for up to twenty‐one elements previously uncharacterised by NIST in these soil RMs. The additional characterisation provided in this investigation can be utilised to reduce the measurement bias of custom calibration routines and improve the quality of control checks developed using these NIST RMs.  相似文献   

11.
A comprehensive method for the precise determination of Re, Os, Ir, Ru, Pt and Pd concentrations as well as Os isotopic compositions in geological samples is presented. Samples were digested by the Carius tube method, and the Os was extracted by conventional CCl4 method. The Re, Ir, Ru, Pt and Pd were first subgroup separated from the matrix elements into Re‐Ru, Ir‐Pt and Pd by a 2‐ml anion exchange column. Subsequently, the Re‐Ru was further purified by a secondary 0.25 ml anion exchange column or by microdistillation of Ru using CrO3‐H2SO4 as an oxidant followed by a secondary 0.25 ml anion exchange separation of Re. The Pd and Ir‐Pt were further successively purified by an Eichrom‐LN column to completely remove Zr and Hf, respectively. Rhenium, Ir, Ru, Pt and Pd were individually measured by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS), except for Ru after microdistillation purification was analysed by negative‐thermal ionisation mass spectrometry (N‐TIMS). The analytical results for peridotite reference material WPR‐1 agree well with the previously published data. Finally, several mafic rock reference materials including TDB‐1, WGB‐1, BHVO‐2, BCR‐2, BIR‐1a and DNC‐1a were analysed for Re‐Os isotopes and platinum‐group element concentrations to test their suitability for certification.  相似文献   

12.
We present new reference values for the NIST SRM 610–617 glasses following ISO guidelines and the International Association of Geoanalysts’ protocol. Uncertainties at the 95% confidence level (CL) have been determined for bulk‐ and micro‐analytical purposes. In contrast to former compilation procedures, this approach delivers data that consider present‐day requirements of data quality. New analytical data and the nearly complete data set of the GeoReM database were used for this study. Data quality was checked by the application of the Horwitz function and by a careful investigation of analytical procedures. We have determined quantitatively possible element inhomogeneities using different test portion masses of 1, 0.1 and 0.02 μg. Although avoiding the rim region of the glass wafers, we found moderate inhomogeneities of several chalcophile/siderophile elements and gross inhomogeneities of Ni, Se, Pd and Pt at small test portion masses. The extent of inhomogeneity was included in the determination of uncertainties. While the new reference values agree with the NIST certified values with the one exception of Mn in SRM 610, they typically differ by as much as 10% from the Pearce et al. (1997) values in current use. In a few cases (P, S, Cl, Ta, Re) the discrepancies are even higher.  相似文献   

13.
Gold and copper concentrations were determined in natural pyrite by near‐infrared femtosecond LA‐ICP‐QMS, using both sulfide reference materials (pyrrhotite Po‐726 and in‐house natural chalcopyrite Cpy‐RM) and NIST SRM 610 as external calibrators. Firstly, using NIST SRM 610 as the external calibrator, we calculated the Au concentration in Po‐726 and the Cu concentration in Cpy‐RM. The calculated concentration averages for Au and Cu were similar to the values published for Po‐726 and Cpy‐RM, respectively. Secondly, we calculated Au and Cu concentrations taking NIST SRM 610 as an unknown sample and using Po‐726 and Cpy‐RM as external calibrators. Again, the average values obtained closely reflected the preferred concentrations for NIST SRM 610. Finally, we calculated Au and Cu concentrations in natural pyrite using sulfide and silicate reference materials as external calibrators. In both cases, calculated concentrations were very similar, independent of the external calibrator used. The aforementioned data, plus the fact that we obtained very small differences in relative sensitivity values (percentage differences are between 5% and 17% for 57Fe, 63Cu and 197Au) on analyses of silicate and sulfide RMs, indicate that there were no matrix effects related to the differences in material composition. Thus, it is possible to determine Au and Cu in natural sulfides using NIST silicate glasses as an external calibrator.  相似文献   

14.
Manganese‐ and iron‐rich materials are of major geoscientific and economic interest, many of which contain microscopic features that provide valuable information. To obtain accurate results, a homogeneous microanalytical reference material for calibration is needed. Several researchers have used the Mn‐ and Fe‐rich RMs, JMn‐1, NOD‐A‐1, NOD‐P‐1 and FeMn‐1, for this purpose; therefore, they were tested in this study to determine their suitability for microanalysis. Their homogeneity was investigated by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) with two different types of lasers (nano‐ and femtosecond), with spot and line scan analyses and with different operating parameters, such as spot size, pulse repetition rate and fluence. As the established manganese nodule RMs revealed inhomogeneities for picogram to microgram test portions, we also investigated the new synthetic Fe‐ and Mn‐rich RM, FeMnOx‐1. FeMnOx‐1 was found to be homogeneous for large (ø 40 μm: 2% RSD repeatability) and small (ø 8–10 μm: 10% RSD repeatability) spot sizes. This homogeneity is in the range of the homogeneous NIST SRM 610 and GSE‐1G reference glasses. Furthermore, FeMnOx‐1 revealed a large‐scale homogeneity within uncertainties of a few per cent, using test portions in the ng range, when measuring four individual mounts of this material.  相似文献   

15.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

16.
The calcium isotopic composition of NIST SRM 915b and 1486 provided by the National Institute of Standards and Technology was analysed. The δ44/40Ca values of the two reference materials relative to NIST SRM 915a were: NIST SRM 915b =+0.72 ± 0.04‰ and NIST SRM 1486 =?1.01 ± 0.02‰. NIST SRM 1486 did not require any chemical separation prior to measurement.  相似文献   

17.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

18.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   

19.
Forty two major (Na, Mg, Ti and Mn) and trace elements covering the mass range from Li to U in three USGS basalt glass reference materials BCR‐2G, BHVO‐2G and BIR‐1G were determined using laser ablation‐inductively coupled plasma‐mass spectrometry. Calibration was performed using NIST SRM 610 in conjunction with internal standardisation using Ca. Determinations were also made on NIST SRM 612 and 614 as well as NIST SRM 610 as unknown samples, and included forty five major (Al and Na) and trace elements. Relative standard deviation (RSD) of determinations was below 10% for most elements in all the glasses under investigation. Consistent exceptions were Sn and Sb in BCR‐2G, BHVO‐2G and BIR‐1G. For BCR‐2G, BHVO‐2G and BIR‐1G, clear negative correlations on a logarithmic scale exist between RSD and concentration for elements lower than 1500 μg g‐1 with logarithmic correlation coefficients between ‐0.75 and ‐0.86. There is also a clear trend of increasing RSD with decreasing concentration from NIST SRM 610 through SRM 612 to SRM 614. These suggest that the difference in the scatter of apparent element concentrations is not due to chemical heterogeneity but reflects analytical uncertainty. It is concluded that all these glasses are, overall, homogeneous on a scale of 60 μm. Our first results on BHVO‐2G and BIR‐1G showed that they generally agreed with BHVO‐2/BHVO‐1 and BIR‐1 within 10% relative. Exceptions were Nb, Ta and Pb in BHVO‐2G, which were 14‐45% lower than reference values for BHVO‐2 and BHVO‐1. Be, Ni, Zn, Y, Zr, Nb, Sn, Sb, Gd, Tb, Er, Pb and U in BIR‐1G were also exceptions. However, of these elements, Be, Nb, Sn, Sb, Gd, Tb, Pb and U gave results that were consistent within an uncertainty of 2s between our data and BIR‐1 reference values. Results on NIST SRM 612 agreed well with published data, except for Mg and Sn. This was also true for elements with m/z 85 (Rb) in the case of NIST SRM 614. The good agreement between measured and reference values for Na and Mg in BCR‐2G, BHVO‐2G and BIR‐1G, and for Al and Na in NIST SRM 610, 612 and 614 up to concentrations of at least several weight percent (which were possible to analyse due to the dynamic range of 108) indicates the suitability of this technique for major, minor and trace element determinations.  相似文献   

20.
This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two‐stage anion‐exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50–70%. After purification, high‐precision Pt isotope determinations were performed by multi‐collector ICP‐MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε192Pt, 0.15 for ε194Pt and 0.09 for ε196Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号