首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SST variability on seasonal to sub-annual scales in the coastal region of South America between 30° and 39°S, largely influenced by the Rio de la Plata estuary’s plume, and its relation to wind variability are explored. Data are six years of daily ensembles of gridded satellite SST and sea surface winds with spatial resolutions of about 11 and 25 km, respectively. Observations from oceanographic cruises are used to validate the results. It is found that the seasonal cycle can be explained in terms of two modes. The first one, characterizing fall-early winter/spring-early summer, is related to the radiative cycle. The second one, corresponding to late summer and winter, displays warm/cold anomalies along the Uruguayan coast forced by the prevailing winds during those seasons. In the upper estuary and the northern part of the area of influence of the freshwater plume, variability in sub-annual scales is significant. A large portion of this variance is related to zonal wind anomalies that force warm/cold SSTs along that coast. Cold anomalies of up to −5 °C occur under anomalously intense easterly winds, indicating upwelling. These events are very frequent and show large persistence, occurring up to one and a half months. They also display a marked seasonal cycle – being more frequent in late spring and summer – large inter-annual variability and seem to be modulated by the continental runoff. When discharge is low, the freshwater plume retracts to the west, reducing the inner-shelf stratification and increasing the likelihood of a full upwelling to the surface. In winter, short time-scale SST variability is mostly due to variability in the atmospheric cold fronts crossing the region. Weaker or less frequent (stronger or more frequent) fronts produce a generalized warming (cooling) over the region. As the estuary heats (colds) faster than the shelf, a warm (cold) anomaly develops in the upper Río de la Plata. On inter-annual time scales, probably because ENSO activity was weak during the studied period, SST variability was not important.  相似文献   

2.
Satellite ocean color and surface salinity data are used to characterize the space–time variability of the Río de la Plata plume. River outflow and satellite wind data are also used to assess their combined effect on the plume spreading over the Southwestern South Atlantic continental shelf. Over the continental shelf satellite-derived surface chlorophyll-a (CSAT) estimated by the OC4v4 SeaWiFS retrieval algorithm is a good indicator of surface salinity. The log (CSAT) distribution over the shelf presents three distinct modes, each associated to: Subantarctic Shelf Water, Subtropical Shelf Water and Plata Plume water. The log (CSAT) 0.4–0.8 range is associated with a sharp surface salinity transition across the offshore edge of the Plata plume from 28.5 to 32.5. Waters of surface salinity <31, derived from mixtures of Plata waters with continental shelf waters, are associated to log (CSAT)>0.5. In austral winter CSAT maxima extend northeastward from the Plata estuary beyond 30°S. In summer the high CSAT waters along the southern Brazil shelf retreat to 32°S and extend south of the estuary to about 37.5°S, only exceeding this latitude during extraordinary events. The seasonal CSAT variations northeast of the estuary are primarily controlled by reversals of the along-shore wind stress and surface currents. Along-shore wind stress and CSAT variations in the inner and mid-shelves are in phase north of the estuary and 180° out of phase south of the estuary. At interannual time scales northernmost Plata plume penetrations in winter (∼1200 km from the estuary) are associated with more intense and persistent northeastward wind stress, which in the period 2000–2003, prevailed over the shelf south of 26°S. In contrast, in winter 1999, 2004 and 2005, characterized by weaker northeastward wind stress, the plume only reached between 650 and 900 km. Intense southwestward plume extensions beyond 38°S are dominated by interannual time scales and appear to be related to the magnitude of the river outflow. The plume response to large river outflow fluctuations observed at interannual time scales is moderate, except offshore from the estuary mouth, where outflow variations lead CSAT variations by about 2 months.  相似文献   

3.
Eight years of AVHRR-derived sea surface temperature (SST) and SeaWiFS-derived surface chlorophyll (Chl) data (1998–2005) are used to investigate key processes affecting the spatial and temporal variability of the two parameters in the Aegean Sea. Seasonal mean SST and Chl maps are constructed using daily data to study seasonal dynamics whereas empirical orthogonal function (EOF) and correlational analysis is applied to the 8-day composite SST and Chl anomaly time-series in order to study the variability and co-variability of the two parameters from subseasonal to interannual time-scales. The seasonal mean fields show that Black Sea cold and chlorophyll-rich waters enter through the Dardanelles Strait and they are accumulated in the north-eastern part of the Aegean Sea, steered by the Samothraki anticyclone. Large chlorophyll concentrations are encountered in the hydrological front off the Dardanelles Strait as well as in coastal areas affected by large riverine/anthropogenic nutrient loads. The SST seasonal mean patterns reveal strong cooling that is associated with upwelling along the eastern boundary of the basin during summer due to strong northerly winds, a process which is not present in the surface chlorophyll climatology. The Chl dataset presents much stronger sub-seasonal variability than SST, with large variations in the phase and strength of the phytoplankton seasonal cycles. EOF analysis of the anomaly time-series shows that SST non-seasonal variability is controlled by synoptic weather variations and anomalies in the north–south wind-stress component regulating the summer coastal upwelling regime. Mean SST and Chl patterns, and their associated variations, are not closely linked implying that Black Sea and riverine inputs mainly control the intra-annual and interannual variability of the surface chlorophyll in the Aegean Sea rather than mixing and/or upwelling processes.  相似文献   

4.
Daily, cloud-free data interpolating empirical orthogonal function (DINEOF) reconstructions of sea-surface temperature (SST) and chlorophyll (Chl-a) satellite imagery are compiled into monthly mean images for a six-year period (2003–2008) and used to identify their spatial and temporal variability on the South Atlantic Bight. Monthly-mean SST has the highest variability on the inner-shelf, decreasing seaward approaching the more stable temperatures of the Gulf Stream (GS). Monthly-mean Chl-a concentrations are similarly highest on the inner shelf throughout the year and decrease cross-shelf toward the nutrient depleted open ocean. Empirical orthogonal function (EOF) analyses on SST and Chl-a show a clear seasonal cycle in their 1st mode of variability, with SST lagging behind Chl-a by approximately one month. The 1st EOF modes account for 95.8% and 46.4% variance of SST and Chl-a, respectively. Chl-a EOF mode 1 in particular shows a highly regionalized spatial pattern with values on the central SAB clearly out of phase with the southern and northern SAB. This regional difference is likely a result of shelf geometry and stratification, which modulate GS influence on the shelf. SST EOF mode 2 exhibits a seasonal cycle as well, which previous studies have shown to be a function of local wind. Chl-a EOF mode 2 is well correlated with the cumulative river transport onto the SAB, but accounts for a relatively small 10.8% of Chl-a variability.  相似文献   

5.
The Río de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28°S) during austral winter and 32°S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds.  相似文献   

6.
Summer upwelling and downwelling processes were characterized in the Northern Galician Rias during July and August 2008 by means of sampling carried out onboard R/V Mytilus (CSIC) and R/V Lura (IEO). Thermohaline variables, dissolved oxygen, nutrients, chlorophyll, phytoplankton, ciliates and zooplankton abundances were measured at sections located in the Rias of Viveiro, Barqueiro and Ortigueira and their adjacent shelves. Ekman transport was calculated from QuikSCAT satellite, upwelling intensity estimated with upwelling index from the average daily geostrophic winds, and SST maps obtained from NASA GHRSST satellite. Ekman transport and SST behaviour showed two different patterns: (i) offshore and upwelling favourable conditions on 13–22nd of July; (ii) onshore and downwelling favourable conditions from 23rd July to 19th August. During upwelling, TS diagram showed an intrusion of Eastern North Atlantic Central Water affecting the continental shelf but not the rias. Nutrient salt concentrations increased with depth, reaching their maximum values near the mouth of Ortigueira Ria. During downwelling, coastal water increased its temperature (18.5–19.8 °C) and was retained inside rias; nutrients were nearly depleted, except for the innermost ria (estuarine zone) due to fluvial nutrient inputs. In this inner area, the maximum of chlorophyll-a (Barqueiro Ria) was observed. Low phytoplankton abundances were measured in both cases, even though a short increase in the plankton biomass was observed inside rias during upwelling, while under downwelling a small red tide of Lingulodinium polyedrum was detected. During the upwelling period Northern Rias tend to be mesotrophic systems as revealed by nutrient concentrations, chlorophyll levels and plankton abundances. On the contrary, in similar situations, the Western Rias behaves as eutrophics.  相似文献   

7.
Maps of satellite-derived estimates of monthly averaged chlorophyll a concentration over the northern West Florida Shelf show interannual variations concentrated near the coastline, but also extending offshore over the shelf in a tongue-like pattern from the Apalachicola River during the late winter and early spring. These anomalies are significantly correlated with interannual variability in the flow rate of the Apalachicola River, which is linked to the precipitation anomalies over the watershed, over a region extending 150–200 km offshore out to roughly the 100 m isobath. This study examines the variability of the Apalachicola River and its impacts on the variability of water properties over the northern West Florida Shelf. A series of numerical model experiments show that episodic wind-driven offshore transport of the Apalachicola River plume is a likely physical mechanism for connecting the variability of the river discharge with oceanic variability over the middle and outer shelf.  相似文献   

8.
In this paper, a possible increase in wind wave heights in the south-eastern south American continental shelf between 32°S and 40°S is investigated. Both time series of in situ (1996–2006) and topex (1993–2001) annual mean significant wave heights gathered at the continental shelf and adjacent ocean present apparent positive trends. Even though these trends are not statistically different from zero, it must be taken into account that the available in situ and satellite data have a short span and, moreover, in situ data present several gaps. Several papers presented evidence about a possible change on the low atmospheric circulation in this region of the southern hemisphere. Consequently, a weak increase in wave height might be occurring, which would be hard to quantify due to the shortness and the insufficiency of the available observations. In order to study a possible trend in mean annual wind wave heights simulating waves nearshore (swan) model forced with ncep/ncar surface wind was implemented in a regional domain for the period 1971–2005. The annual root-mean-square heights of the simulated wave show significant trends at several locations of the inner continental shelf and the adjacent ocean. The most significant increase is observed between 1991–2000 and 1981–1990 decades. The largest difference (0.20 m, 9%) occurs around 34°S–48°W. The wave height increase is somewhat lower, 7%, in the continental shelf and in the río de la plata estuary. The annual mean energy density (spatially averaged) also presents a significant positive trend (0.036 m2/yr) and relatively high inter-annual variability. The possible link between this inter-annual variability and el niño–southern oscillation (enso) was investigated but no apparent relationship was found. A possible increase in the annual mean energy density of waves would be able to produce changes in the littoral processes and, consequently, in the erosion of the coast.  相似文献   

9.
Phytoplankton biomass and primary production were monitored in the Hauraki Gulf and on the northeastern continental shelf, New Zealand - using ship surveys, moored instruments and satellite observations (1998-2001) - capturing variability across a range of space and time scales. A depth-integrated primary production model (DIM) was used to predict integrated productivity from surface parameters, enabling regional-specific estimates from satellite data. The shelf site was dominated by pico-phytoplankton, with low chlorophyll-a (<1 mg m−3) and annual production (136 g C m−2 yr−1). In contrast, the gulf contained a micro/nano-phytoplankton-dominated community, with relatively high chlorophyll-a (>1 mg m−3) and annual production (178 g C m−2 yr−1). Biomass and productivity responded to physico-chemical factors; a combination of light, critical mixing depths and/or nutrient limitation—particularly new nitrate-N. Relatively low biomass and production was observed during 1999. This coincided with inter-annual variability in the timing and extent of upwelling- and downwelling-favourable along-shelf wind-stress, influencing the fluxes of new nitrate-N to the shelf and gulf. Relationships with the Southern Oscillation Index are also discussed. Our multi-scaled sampling highlighted details associated with stratification and de-stratification events, and deep sub-surface chlorophyll-a not visible to satellite sensors. This study demonstrates the importance of multi-scaled sampling in gaining estimates of regional production and its responses to physico-chemical forcing.  相似文献   

10.
11.
In this work, we make use of satellite estimates of chlorophyll a, photosynthetically active radiation and sea surface temperatures, to compute regional estimates of primary production integrated throughout the euphotic layer for the Algero-Provençal Basin, by means of a modified version of the vertically generalized production model. The seasonal and interannual variability of the primary production has been analysed over the decade 1997–2007. Empirical orthogonal functions analysis has been applied to decompose the variability of the primary production dataset in orthogonal modes of variability. The seasonal signal is distributed between the two first modes of variability, temporally shifted each other and respectively related to the northern (early spring) and the southern (winter) part of the basin. We found a minimum of the annual production in 2003, when a summer heatwave strongly enhanced the stratification of surface waters, further limiting the injection of nutrients into the surface layers. Maxima in the annual series are found in 1999 and 2005, due to two particularly intense and extended (in space) spring-blooms in the northern part of the basin. These two maxima, clearly identified in space and time by EOF analysis (EOF1 and EOF3), are related to strong mistral-wind interannual events occurring during winters of 1999 and 2005, preceding the blooms by some few months. We found that these production maxima are due both to a more intense production in the usual blooming area (shown by EOF1–PC1) as well as to an exceptional local production in the eastern side of the basin, off the Corsica western coasts (EOF3–PC3). Previous observations of exceptional deep-water formation events in 1999 and 2005, with easterly spots close to the primary production-observed anomalies, and the meridional character of the mistral 1999 and 2005 peaks both support the idea that such eastern PP interannual maxima would be actually due to exceptional production more than to an easterly advection of biomass from the usual bloom area. Finally, the potential link of the observed features with large-scale atmospheric forcing is discussed, and a potential relation of such interannual events with the East Atlantic pattern is drawn.  相似文献   

12.
Regions in the Gulf of Mexico are determined based on the statistical behavior of the long-term monthly means of chlorophyll-a concentration from SeaWiFS satellite estimations. An analysis based on the four largest modes of an empirical orthogonal decomposition, which account for 84.9% of the variance, results in nine spatial patterns with different statistical behavior representing 14 connected regions. The time evolution (or principal component) of the first two modes resemble the annual cycle, but each one with a different phase; the third mode represents a semiannual period and the fourth mode shows three maxima and minima. A map of the resulting regions is obtained and the oceanographic processes taking place in each region are discussed. The largest region covers most of the deep Gulf and the continental slope. Other regions in the deep Gulf are located southeast of the Mississippi River mouth and off-shelf of southern Texas and Tabasco, all associated with seasonal offshore cross-shelf transports. The shelves are associated with specific regions, but in wide shelves the inner and outer continental platforms are separated. Among the causes that determine different regions are topographic characteristics and the seasonal variability of physical processes, mainly entrainment caused by heat and momentum fluxes, upwelling, river plumes, and cross-shelf transports associated with the convergence of the along-coast currents.  相似文献   

13.
Hydrographic data collected during surveys carried out in austral winter 2003 and summer 2004 are used to analyze the distributions of temperature (T) and salinity (S) over the continental shelf and slope of eastern South America between 27°S and 39°S. The water mass structure and the characteristics of the transition between subantarctic and subtropical shelf water (STSW), referred to as the subtropical shelf front (STSF), as revealed by the vertical structure of temperature and salinity are discussed. During both surveys, the front intensifies downward and extends southwestward from the near coastal zone at 33°S to the shelf break at 36°S. In austral winter subantarctic shelf water (SASW), derived from the northern Patagonia shelf, forms a vertically coherent cold wedge of low salinity waters that locally separate the outer shelf STSW from the fresher inner shelf Plata Plume Water (PPW) derived from the Río de la Plata. Winter TS diagrams and cross-shelf T and S distributions indicate that mixtures of PPW and tropical water only occur beyond the northernmost extent of pure SASW, and form STSW and an inverted thermocline characteristic of this region. In summer 2004, dilution of Tropical water (TW) occurs at two distinct levels: a warm near surface layer, associated to PPW–TW mixtures, similar to but significantly warmer than winter STSW, and a colder (T∼16 °C) salinity minimum layer at 40–50 m depth, created by SASW–STSW mixtures across the STSF. In winter, the salinity distribution controls the density structure creating a cross-shore density gradient, which prevents isopycnal mixing across the STSF. Temperature stratification in summer induces a sharp pycnocline providing cross-shelf isopycnal connections across the STSF. Cooling and freshening of the upper layer observed at stations collected along the western edge of the Brazil Current suggest offshore export of shelf waters. Low T and S filaments, evident along the shelf break in the winter data, suggest that submesoscale eddies may enhance the property exchange across the shelf break. These observations suggest that as the subsurface shelf waters converge at the STSF, they flow southward along the front and are expelled offshore, primarily along the front axis.  相似文献   

14.
Daily variations in nutrients were monitored for 15 months (September 2007–November 2008) in the Godavari estuary, Andhra Pradesh, India, at two fixed locations. River discharge has significant influence on nutrients loading to the estuary, which peaks during June–August (peak discharge period; monsoon) whereas exchanges at the sediment–water interface, groundwater and rainwater contribute significantly during other period. Despite significant amount of nutrients brought by discharge to the study region, phytoplankton biomass, in terms of chlorophyll-a (Chl a), did not increase significantly due to high suspended load and shallow photic depth. Nutrients showed downward gradient towards downstream of the estuary from upstream due to dilution by nutrient poor seawater and biological uptake. The N:P ratios were higher than Redfield ratio in both upstream and downstream of the estuary during no discharge period suggesting PO4 to be a limiting nutrient for phytoplankton production, at levels <0.10 μmol L−1. On the other hand, Si:N ratios were always more than unity during entire study period at both the stations indicating that Si(OH)4 is not a limiting nutrient. Our results suggest that suspended matter limits phytoplankton biomass during peak discharge period whereas PO4 during no discharge period.  相似文献   

15.
The composition of phytoplankton assemblages were studied in three sections across the continental shelf between the Río de la Plata and the oceanic waters of the Subtropical Convergence, during late spring. Algal communities were examined using microscopy and HPLC-derived pigment concentrations. The CHEMTAX program was used to estimate the chlorophyll a (chl a) biomass of different algal classes. Trends in pigment ratios due to phytoplankton photo-adaptation and photo-acclimation were also examined. In order to accommodate the natural diversity of phytoplankton assemblages the original data have been split to represent five ecosystems. In addition, the pigment data for the Brazil Current ecosystem has been split by sample depth.  相似文献   

16.
17.
From 15 to 28 August in 2007, a Chaetoceros socialis bloom was detected in the Pearl River Estuary water with chlorophyll a concentration (Chl a) up to 30 mg m−3 and cell density up to 106 cells L−1. Time series of bio-optical measurements was obtained at a single site (114.29°E, 22.06°N) with the mooring of marine optical buoy. Light absorption properties of seawater experienced large variability throughout the algal bloom. Absorption by colored dissolved organic matter (CDOM) was one of the dominant optical components of the light absorption (30–70%) especially for pre- and post-bloom waters, and it tended to decrease with Chl a during the algal bloom. Absorption by phytoplankton was another dominant optical component (18–50%) and increased rapidly with Chl a. Phytoplankton and accompanying material played dominant roles in light absorption as indicated by the relationship between absorption coefficient and Chl a. At high pigment concentrations, water samples showed significantly lower specific phytoplankton absorption, compared with pre- and post-bloom conditions, with the specific phytoplankton concentration at 443 nm varied between 0.011 and 0.022 m2 mg−1 and that at 676 nm between 0.007 and 0.018 m2 mg−1; small values of blue-to-red ratio of phytoplankton were also observed. These lower values were associated with variations in phytoplankton size structure. Spectral variability of phytoplankton absorption and total absorption (not including the fixed background absorption by pure water itself) could be expressed as simple linear functions linking absorption at one wavelength to the absorption at the other wavelengths, with the slope of the relationship changing with wavelength. The absorption coefficients by non-algal particles and CDOM follow the general exponential functions with remarkably limited variability in the exponent with means of 0.0105 and 0.0166 nm−1, respectively. These spectral dependencies of absorption coefficients provide useful information for retrieving inherent optical properties from reflectance data in a remote-sensing context.  相似文献   

18.
Two very high-frequency radars (VHFR) operating on the Opal coast of eastern English Channel provided a nearly continuous 35-day long dataset of surface currents over a 500 km2 area at 0.6–1.8 km resolution. Argo drifter tracking and CTD soundings complemented the VHFR observations, which extended approximately 25 km offshore. The radar data resolve three basic modes of the surface velocity variation in the area, that are driven by tides, winds and freshwater fluxes associated with seasonal river discharge. The first mode, accounting for 90% of variability, is characterized by an along-shore flow pattern, whereas the second and third modes exhibit cross-shore, and eddy-like structures in the current velocity field. All the three modes show the dominant semi-diurnal variability and low-frequency modulation by the neap-spring tidal cycle. Although tidal forcing provides the major contribution to variability of local currents, baroclinicity plays an important role in shaping the 3D velocity field averaged over the tidal cycle and may strongly affect tracer dynamics on larger time scales. An empirical orthogonal function (EOF) decomposition and a spectral rotary analysis of the VHFR data reveal a discontinuity in the velocity field occurring approximately 10 km offshore which was caused by the reversal in the sign of rotation of the current vector. This feature of local circulation is responsible for surface current convergence on ebb, divergence on flood and strong oscillatory vertical motion. Spectral analysis of the observed currents and the results of the Agro drifter tracking indicate that the line of convergence approximately follows the 30-m isobath. The most pronounced feature of the radar-derived residual circulation is the along-coast intensification of surface currents with velocity magnitude of 0.25 m/s typical for the Regions of Freshwater Influence (ROFI). The analysis has provided a useful, exploratory examination of surface currents, suggesting that the circulation off the Opal coast is governed by ROFI dynamics on the hypertidal background.  相似文献   

19.
Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8–12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.  相似文献   

20.
This study investigates environmental assessment of artificial reef systems deployed at different areas in terms of nutrient cycling and seabed organic enrichment. Two identical artificial reef systems: Olhão Artificial Reef—OAR (37°00′55″N and 007°44′54″W) and Faro Artificial Reef—FAR (36°58′65″N and 008°00′91″W) were deployed in southern Portuguese coast, adjacent to a highly productive coastal lagoon (Ria Formosa) in 1990 and monitorized over two years (1992–1993). Water samples were collected within OAR and FAR systems, inside the lagoon (L) and in a non-reef area (NRA) to evaluate nutrient dynamics. Settled particles and sediment cores were also sampled within OAR and FAR to determine aluminium, calcium, silicon and chlorophyll a and organic and inorganic carbon, nitrogen and phosphorous. Results obtained showed that: (i) water column nutrients evidenced seasonal and spatial variability. The maximum nutrients concentration was recorded inside the lagoon and in OAR, mainly during warmer periods. Ammonium, nitrate and silicate in OAR were statistically higher (p<0.01, n=18) than in FAR and NRA; (ii) particulate organic carbon and nitrogen in FAR settled particles were significantly higher (p<0.005) than those collected at OAR; and (iii) organic carbon and nitrogen, calcium, aluminium and chlorophyll a in OAR upper sediment were higher than at FAR. The overall results suggest that OAR is a productive system, emphasizing its contribution to the trophic chain pull out, while FAR presented oceanic oligotrophic water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号