首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于ANSYS/LS-DYNA动力学分析软件,采用非线性动力有限元法,对坠物撞击海底管道的过程进行数值仿真。通过大量的数值模拟得出:相同坠落物能量的情况下,悬空管道的凹陷损伤深度与裸露管道的相比偏小,且随着坠落物能量的增加,其差值增大;随着坠落物速度、坠落物质量的增大,管道撞击部位凹陷变形加剧,海底管道悬空段的最大振动幅值增大;相同坠落物能量的情况下,坠落物与悬空管道的接触面积越小,悬空管道的损伤深度越大;海床土体参数(剪切弹性模量、内摩擦角、密度)的变化对悬空管道的凹陷损伤深度及悬空段的最大振动幅值的影响较小。  相似文献   

2.
娄敏  明海芹 《海洋通报》2015,34(1):113-120
基于ANSYS/LS-DYNA动力学分析软件,采用非线性动力有限元法,对坠物撞击海底管道的过程进行数值仿真。通过大量的数值模拟得出:相同坠落物能量的情况下,悬空管道的凹陷损伤深度与裸露管道的相比偏小,且随着坠落物能量的增加,其差值增大;随着坠落物速度、坠落物质量的增大,管道撞击部位凹陷变形加剧,海底管道悬空段的最大振动幅值增大;相同坠落物能量的情况下,坠落物与悬空管道的接触面积越小,悬空管道的损伤深度越大;海床土体参数(剪切弹性模量、内摩擦角、密度)的变化对悬空管道的凹陷损伤深度及悬空段的最大振动幅值的影响较小。  相似文献   

3.
基于非线性有限元分析软件ANSYS/LS-DYNA建立海底悬空管道受坠物撞击的三维模型,考虑接触、摩擦和管土耦合作用,模拟海底悬空管道受坠物撞击的动态响应过程。通过大量的数值模拟,对比分析撞击能量、撞击角度以及坠物与管道间的摩擦对海底悬空管道受撞击部位凹陷损伤的影响。结果表明:管道受撞击部位的凹陷损伤随撞击能量的增大而变大;坠物撞击角度越大,管道受撞击部位的凹陷损伤越大;坠物与管道之间的摩擦使管道受撞击部位凹陷损伤略微增大,但影响很小。  相似文献   

4.
海底管道一旦受到坠物撞击损伤,会造成严重的环境污染及经济损失,为保证管道在运行期间的安全性,常对其进行埋深处理。对于有埋深的海底管道,坠物的撞击会造成管道上覆土体的大变形,在数值模拟中会导致网格畸变,甚至无法收敛。耦合欧拉-拉格朗日法(CEL法)可有效处理土体大变形问题,本文基于此方法建立了坠物-管道-土体有限元模型,分析了坠物撞击速度、质量、形状、海床土体性质(弹性模量、内摩擦角、黏聚力)、埋深对海底管道塑性变形的影响。结果表明,管道的凹痕深度随坠物撞击速度和质量的增加而增加;坠物与海床土体及管道接触面积越小,管道的凹痕深度越大;管道的埋置深度及海床土体的性质对吸收坠物的撞击能量有直接关系:海床土体的强度越高、埋深越大,管道所受到的损伤程度越小。分析结果可为管道的设计与防护工作提供科学依据,且与现行规范比较,本文方法更加经济、合理。  相似文献   

5.
针对船舶抛锚、海洋平台坠物以及渔业拖网板对海底管线的撞击会造成损伤,本文采用非显式有限元法对其损伤程度进行了模拟。采用Drucker-Prager(DP)模型模拟海床,建立了坠物-管道-土体有限元模型,分析了坠物质量、形状、撞击速度、海床土体性质(弹性模量、内摩擦角、粘聚力)、埋深及拖网板撞击方式对海底管道塑性变形的影响。分析结果可以为管道的设计与防护工作提供科学依据,并且与现行规范进行了比较,本方法结果更加经济、合理。  相似文献   

6.
基于ANSYS/LS-DYNA有限元软件显示动力分析,采用非线性动态有限元法,对海底管道受坠物碰撞的动态过程进行数值模拟,对比分析坠物质量、坠物形状、轴向预加荷载因素对海底管道在撞击作用下凹陷及损伤区域的影响。结果表明:海底管道受撞击部位的凹陷及损伤区域随着坠物能量的增加而增大;坠物形状因素由于碰撞发生时接触面不同对管道凹陷及损伤区域造成不同的影响;海底管道内压的存在一定程度上抵抗了碰撞造成的局部塑性损伤变形;轴向受拉对海底管道损伤方面的影响很小可忽略不计;适当增加轴向压力可提升海底管道抗碰撞冲击能力而过大的轴向压力会加剧管道破坏。  相似文献   

7.
船舶抛锚撞击水下管汇会影响到管汇的正常作业,基于ANSYS/LS-DYNA动力学分析软件,建立锚-水下管汇-海床土体的三维有限元模型,对抛锚碰撞水下管汇的过程进行数值仿真。通过求解水下管汇受碰撞后的等效应力、应变的时间历程及受撞击部位的凹陷损伤深度,发现最大等效应力点出现在管汇与锚接触位置处,管汇的碰撞部位最终发生凹痕变形。同时讨论锚与管汇接触面的形状以及海床土体对水下管汇损伤程度的影响,当冲击能量相同时,锚与水下管汇的碰撞接触面积越小,水下管汇的损伤深度就越大;当锚与管汇接触的接触面积相同时,冲击能量越大,水下管汇的损伤变形越大。海床土体的剪切弹性模量对管汇的凹陷损伤深度以及最大等效应力影响与冲击能量有关,海床土体的内摩擦角对管汇的碰撞影响较小。  相似文献   

8.
为探索海底管道在锚击作用下的损伤规律,通过海底管道损伤试验和数值模拟,研究了坠物质量、坠落高度和坠物形状对海底管道机械损伤的影响,并结合试验结果修正了Ellinas-Wallker公式。研究结果表明:管道的凹陷损伤随坠物质量和坠落高度的增大而变大;在相同质量的立方体、球体和模型锚三种形状坠物作用下,球体坠物对管道的损伤最严重;EllinasWallker公式计算结果偏于保守,修正后计算结果与试验和数值模拟结果吻合良好。研究结果可以为海底管道的工程设计及应用提供一定的参考。  相似文献   

9.
针对船舶抛锚或海洋平台坠物对海底管线的撞击会对管道造成一定的危害,本文设计了坠物撞击管道的实验装置,并对实验装置进行了优化分析,在此基础上提出了可行的实验方案。通过ANSYS有限元软件对该实验装置进行了静力分析,确定了最终的装置结构形式,并开展了坠物与管道的撞击实验。该装置在实验条件下最大变形不足1mm,可满足实验要求。实验证明,随着撞击能量的增加,管道的损伤程度明显增大。本次实验研究结果为分析坠物对管道的撞击作用提供了研究基础。  相似文献   

10.
海底管道-土体-水体相互作用对土体和管道的稳定性具有重要影响,但波浪作用下海底管道对其周围土体性质的影响仍有待深入研究。通过一系列室内波浪水槽试验,研究了波浪荷载和管道振动作用下海床土体内部的超孔隙水压力响应。实验结果表明,管道的铺设会增大海底土体超孔隙水压力累积程度,当管道发生振动时,海床土体超孔隙水压力累积程度进一步增大,从而增加了土体液化势。此外,波高增加也会导致海床土体的超孔隙水压力累积程度增大。本文研究成果对管道-土体相互作用研究和海底管道维护具有指导意义。  相似文献   

11.
臧志鹏  许振  邹星  侯静 《海洋工程》2023,41(4):114-126
以往的海底管道落锚撞击防护数值模拟主要为单一保护层模型,这里则针对块石+混凝土排垫复合方案建立模型并开展防护性能研究。基于ABAQUS建立有限元数值模型,模拟了落锚、海底管道、海床土体、块石层和混凝土排垫组成的复杂系统相互作用,研究了管道壁厚、内压,落锚质量和撞击速度等因素对管道应变极值和管体凹陷变形的影响。与单纯块石层保护方案相比,采用的块石+混凝土排垫方案具有更优良的防护效果。研究结果表明:在撞击点处,管道的轴向应变和环向应变均达到最大值,且随着与撞击点距离的增加沿管道轴向逐渐减小;撞击结束后,管道上仍然残留一定的塑性应变。随着管道壁厚的增加,管道的最大应变和凹陷深度也随之减小;随着内压的增加,管道上最大拉伸应变变大,而最大压缩应变和凹陷深度减小。随着落锚速度或者质量的增加,管道上最大应变和凹痕深度均变大;在相同动能情况下,管道上的最大应变和凹陷值基本相同,也表明落锚动能是影响管道变形响应的控制因素。本文研究成果可为海底管道防护方案设计提供科学依据。  相似文献   

12.
采用三维非线性动态有限元方法对抛锚撞击海底管道进行模拟。建立霍尔锚模型,考虑管土相互作用,研究不同撞击能量下抛锚撞击管道的机械损伤(最大凹陷)变化规律。对不同防护措施的防护效果进行探讨,包括埋深、混凝土配重层、加大径厚比等措施。数值模拟结果与试验结果进行对比,两者结果吻合较好。结果表明:当锚与管道接触面积越小时,锚对管道的撞击凹陷越大;加大埋深对抛锚撞击管道有很好防护的作用;管道内压对抛锚撞击管道有一定的抵抗作用;混凝土配重层对防护抛锚撞击管道的防护作用不明显;增加管道壁厚是防护抛锚撞击管道的有效措施之一,也应考虑经济性。本文研究结果为实际工程中降低抛锚撞击管道机械损伤后果提供参考。  相似文献   

13.
海底管道是海上油气生产的重要设施,而管道悬空是影响其安全运作的主要因素之一。根据海底管道复勘资料,利用ArcGIS对埕岛油田海底管道的在位状态以及分布情况进行分析,重点统计分析了管道悬空特征和悬空规律,并分析了海底管道悬空的原因以及影响因素。结果表明,悬空管道占总调查管道总长度的4.03%,主要分布在水深为5~15 m范围内的三角洲前缘斜坡上。近90%悬空管段的长度<60 m,其中以10~20 m最为常见。超过90%悬空管段的悬空高度<1 m,其中以0.2~0.4 m最为常见。研究区海底管道悬空的主要原因为海床冲刷,其影响因素主要包括沉积物特征、地形地貌以及海洋动力条件。  相似文献   

14.
海底滑坡作为常见的海洋地质灾害,对海洋油气工程安全产生巨大威胁。海床土体失稳引起滑坡体滑动,会对海底管道产生拖曳作用。基于计算流体动力学方法(CFD)建立海底滑坡体对管道作用的评估模型,采用H-B模型描述块状滑坡体并与试验比较验证,分析不同海床倾斜度滑坡对管道的作用并拟合表达式;研究了海底管道在滑坡作用下的力学响应,并采用极限状态方法开展海底滑坡作用下管道结构极限安全分析,探讨了管道埋地状态时的极限安全界限,建立滑坡作用下管道结构安全分析方法。研究表明:滑坡对管道作用力与海床倾角呈现正相关,而覆土层厚度对作用力影响较小;随着不排水抗剪强度的减小,允许的滑坡宽度和速度均增加,表明土体不排水抗剪强度与引起的拖曳力呈正相关;滑坡土体宽度对极限安全速度影响较大。  相似文献   

15.
海底沙波是一种常见近似规则的起伏地貌形态,通常具有较强的活动性,能引起海底管道的裸露和悬空,进而造成管道的疲劳失效甚至断裂等重大危害。根据近几年海底沙波领域的最新研究成果,介绍了当前海底沙波的主要研究方法,包括现场实测观测、稳定性模型分析和数值计算模拟等的适用性和局限性以及未来发展方向。对海底沙波的成因和迁移机制进行了归纳分析,明确了多种主要的水动力环境因素,以及对于极端天气因素的考虑。从海底管道施工期和服役期分别讨论了海底沙波对于海底管道工程的影响,并建议将沙波活动和局部冲刷两种不同尺度的海床地貌改变耦合分析,以评估海底管道稳定性,最后提出了悬空海底管道的一些有效治理和维护手段。  相似文献   

16.
邢静忠  柳春图 《海洋工程》2007,25(4):21-26,38
针对裸露悬跨海底管道,考虑线弹性海床刚度,利用梁的小挠度理论,研究管道在自重作用下的变形和内力,推导给出了未脱离海床的管道段和悬跨管道段的变形和内力公式。在跨度较大的悬跨情况下,悬跨管道段较大的向下弯曲变形可能引起海床上管道脱离海床而翘起。建立管道翘起的判定准则,对于翘起情况推导相应的计算公式,通过算例给出翘起情况下管道的变形和内力。通过计算分析发现:工程上多数悬跨是翘起情况,没有翘起的计算公式只适应于跨度较小的悬跨管道。同时翘起情况下不同海床刚度对悬跨管道无量纲内力影响不大。  相似文献   

17.
姜逢源  董胜 《海洋工程》2023,41(6):187-199
平台坠物、船舶抛锚等第三方活动引起的冲击损伤是近海管道失效的主要原因,时刻威胁中国海洋油气开发系统的安全性。为保障近海油气管道安全运行,围绕冲击荷载作用下管道损伤及失效评估这一中心问题,从管道损伤机理研究、含冲击损伤管道安全评估、管道工程项目风险评估3个方面总结了国内外研究发展现状,明确了影响结构安全的关键问题,并对未来研究工作提出建议。挖沟埋深为管道防护冲击损伤的有效手段,土体强度是防护效果关键因素,应重点关注土体强度空间变异性问题;管道冲击损伤主要为平滑凹陷和弯折凹陷,对于后者应进一步确定其在内压荷载下的剩余强度及疲劳强度;风险评估中失效判据对于结果有显著影响,需构建考虑多种安全性评估准则的失效判据体系。  相似文献   

18.
海底管道是天然气水合物大规模开采和集输的关键装备。天然气水合物的开采过程会扰动沉积层的结构,改变沉积层的强度和力学特性,诱发海床发生不均匀沉降,并对水合物开采区内海底管道的力学特性产生影响,如引起管道发生大变形、悬跨、屈曲、断裂等。基于ABAQUS有限元软件,建立天然气水合物开采区内“海床-管道”耦合作用模型,模拟了天然气水合物开采过程中海床沉降变形及其对管道应力、应变、弯矩、悬跨等力学行为的影响。研究结果表明,在天然气水合物开采过程中,海床的不均匀沉降将引起管道发生显著位移并发生弯曲,管道的应力、应变随着变形的增大而增大。当海床沉降量达到某一程度时,管道将脱离海床,产生悬跨,并引发涡激振动风险。  相似文献   

19.
由于钢悬链线立管具有非线性特性,而海床土体又是软黏土,因此钢悬链线立管触地区域的管土的相互作用十分复杂。根据国外相关试验数据,采用ANSYS中的非线性弹簧单元模拟海床土体,考虑海床土体刚度退化和土吸力对管道的作用,建立海底管道拟静力有限元计算模型,计算分析管道与海床土体的相互作用,并探讨管道触地点区域关键点在顶端升沉运动下弯矩的变化规律,为进一步研究SCR与海床的动力相互作用提供参考。  相似文献   

20.
海底埋设高温管道隆起屈曲数值模拟研究   总被引:1,自引:1,他引:0  
高温是引发海底管道整体屈曲失效的主要因素,而海床上存在的局部隆起使得高温埋设管道更加容易发生隆起屈曲。这里重点研究海底埋设高温管道发生隆起屈曲的临界温度载荷及其影响因素,提出了一种简化的数值模拟分析模型,同已有的相关实验结果比较表明,本方法可以较好地近似计算高温管道的隆起屈曲。基于本方法开展的参数分析,得到了管道覆土高度、混凝土配重层厚度、海床不平整对海底高温管道发生隆起屈曲的影响趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号