首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diatomite, about 60 m thick, of late Palaeocene-early Eocene age crops out in northern Jutland, Denmark. The diatomite is locally termed ‘Moler’. Frustules of marine diatoms constitute c. 65% (by weight) of the diatomite, and clay minerals, chiefly montmorillonite, make up the remainder. Slight variations in the relative supply of diatom frustules and clay minerals are preserved undisturbed in laminated diatomite, while lamination is partly destroyed by burrowing organisms in weakly laminated diatomite and obliterated by total bioturbation in structureless diatomite; these three facies alternate throughout the sequence. The presence or absence of infaunal burrowing organisms is interpreted as a record of the content of dissolved oxygen in the water above the sediment-water interface and hence of the position of the redox potential discontinuity. Interspaced in the diatomite are 179 identifiable layers of volcanic ash. These ash layers provide a means of precise lateral correlation. They show that levels of laminated diatomite may be followed throughout the basin and therefore that changes between anoxic and oxic conditions occurred simultaneously across the area. The laminated diatomites may consequently be interpreted as representing short-term anoxic events, of which twelve have been recognized.  相似文献   

2.
Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank   总被引:1,自引:0,他引:1  
The open-ocean carbonate slope north of Little Bahama Bank consists of a relatively steep (4°) upper slope between water depths of 200 and 900 m, and a more gentle (1–2°) lower slope between depths of 900 and 1300+ m. The upper slope is dissected by numerous, small, submarine canyons (50–150 m in relief) that act as a line source for the downslope transport of coarse-grained carbonate debris. The lower slope is devoid of any well-defined canyons but does contain numerous, small (1–5 m) hummocks of uncertain origin and numerous, larger (5–40 m), patchily distributed, ahermatypic coral mounds. Sediments along the upper slope have prograded seaward during the Cenozoic as a slope-front-fill seismic facies of fine-grained peri-platform ooze. Surface sediments show lateral gradation of both grain size and carbonate mineralogy, with the fine fraction derived largely from the adjacent shallow-water platform. Near-surface sedimentary facies along the upper slope display a gradual downslope decrease in the degree of submarine cementation from well-lithified hardgrounds to patchily cemented nodular ooze to unlithified peri-platform ooze, controlled by lateral variations in diagenetic potential and/or winnowing by bottom currents. Submarine cementation stabilizes the upper part of the slope, allowing upbuilding of the platform margin, and controls the distribution of submarine slides, as well as the headward extent of submarine canyons. Where unlithified, sediments are heavily bioturbated and are locally undergoing dolomitization. Upper slope sediments are also ‘conditioned’eustatically, resulting in vertical, cyclic sequences of diagenetically unstable (aragonite and magnesian calcite-rich) and stable (calcite-rich) carbonates that may explain the well-bedded nature of ancient peri-platform ooze sequences. Lower slope sediments have prograded seaward during the Cenozoic as a chaotic-fill seismic facies of coarse-grained carbonate turbidites and debris flow deposits with subordinate amounts of peri-platform ooze. Coarse clasts are ‘internally’derived from fine-grained upper slope sediments via incipient cementation, submarine sliding and the generation of sediment gravity flows. Gravity flows bypass the upper slope via a multitude of canyons and are deposited along the lower slope as a wedge-shaped apron of debris, parallel to the adjacent shelf edge, consisting of a complex spatial arrangement of localized turbidites and debris flow deposits. A proximal apron facies of thick, mud-supported debris flow deposits plus thick, coarse-grained, Ta turbidites, grades seaward into a distal apron facies of thinner, grain-supported debris flow deposits and thinner, finer grained Ta-b turbidites with increasing proportions of peri-platform ooze. Both the geomorphology and sedimentary facies relationships of the carbonate apron north of Little Bahama Bank differ significantly from the classic submarine fan model. As such, a carbonate apron model offers an alternative to the fan model for palaeoenvironmental analysis of ancient, open-ocean carbonate slope sequences.  相似文献   

3.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

4.
ABSTRACT Pebbly sediments of the shallow marine Abrioja fan-delta show pockets (bowl-shaped structures, partly filled with pebbles) and pillars (elongate structures, filled with sand and pebbles). These structures are most abundant in pebbly sediments deposited on a steep slope ( ca. 25°-10°) and are absent in conglomerates deposited on a slope of ca . 6° and less, although they are present in the pelitic top of these beds.
The pocket and pillar structures are interpreted as fluid escape structures originating from local liquefaction and fluidization, processes which are favoured by rapid deposition, rapid sediment accumulation, the presence of less permeable layers and an immature sediment texture.
These conditions are met in conglomeratic fan-deltas, which have steep slopes with immature sediments. It is concluded that the presence of fluid escape structures in conglomeratic sediments may indicate a steep depositional slope.  相似文献   

5.
鲁武马盆地古近系-新近系发育多套超深水、超大型、富含天然气藏的重力流沉积砂体。以始新统砂体为解剖对象,分析区内重力流砂岩储层特征及成因。结果表明砂体以巨厚层状产出于深海泥岩内部,并与周围泥岩截然接触,测井曲线表现出宏观均一性;岩心揭示此类巨厚砂体是由多期单砂体叠置而成,单砂体是由底部高密度颗粒流和顶部低密度浊流两部分组成,且经历过强底流改造。鲁武马河流三角洲强大物源供给决定了区内砂体分布面积和体积规模;深海滑塌、块体搬运等重力流沉积过程控制了沉积体粒序构造和内部结构;海底区域性强底流持续冲刷并携带走单砂体顶部细粒沉积物,残留了底部“干净”的中粗粒砂岩;多期沉积事件和频繁水道迁移决定了砂体纵、横向叠加展布,并最终形成了区内厚度巨大、岩性宏观均一且连通性极好的超大型深水重力流沉积砂岩储层。  相似文献   

6.
Water escape structures in coarse-grained sediments   总被引:10,自引:0,他引:10  
Three processes of water escape characterize the consolidation of silt-, sand-and gravel-sized sediments. Seepage involves the slow upward movement of pore fluids within existing voids or rapid flow within compact and confined sediments. Liquefaction is marked by the sudden breakdown of a metastable, loosely packed grain framework, the grains becoming temporarily suspended in the pore fluid and settling rapidly through the fluid until a grain-supported structure is re-established. Fluidization occurs when the drag exerted by moving pore fluids exceeds the effective weight of the grains; the particles are lifted, the grain framework destroyed, and the sediment strength reduced to nearly zero. Diagenetic sedimentary structures formed in direct response to processes of fluid escape are here termed water escape structures. Four main types of water escape structures form during the fluidization and liquefaction of sands: (1) soft-sediment mixing bodies, (2) soft-sedimsnt intrusions, (3) consolidation laminations, and (4) soft-sediment folds. These structures represent both the direct rearrangement of sediment grains by escaping fluids and the deformation of hydroplastic, liquefied, or fluidized sediment in response to external stresses. Fundamental controls on sediment consolidation are exerted by the bulk sediment properties of grain size, packing, permeability, and strength, which together determine whether consolidation will occur and, if so the course it follows, and by external disturbances which act to trigger liquefaction and fluidization. The liquefaction and fluidization of natural sands usually accompanies the collapse of loosely packed cross-bedded deposits. This collapse is commonly initiated by water forced into the units as underlying beds, especially muds and clays, consolidate. The consolidation of subjacent units is often triggered by the rapid deposition of the sand itself, although earthquakes or other disturbances are probably influential in some instances. Water escape structures most commonly form in fine- to medium-grained sands deposited at high instantaneous and mean sedimentation rates; they are particularly abundant in cross-laminated deposits but rare in units deposited under upper flow regime plane bed conditions. Their development is favoured by upward decreasing permeability within sedimentation units such as normally graded turbidites. They are especially common in sequences made up of alternating fine-(clay and mud) and coarse-grained (sand) units such as deep-sea flysch prodelta, and, to a lesser extent, fluvial point bar, levee, and proximal overbank deposits.  相似文献   

7.
Deep‐water sandstone beds of the Oligocene Fusaru Sandstone and Lower Dysodilic Shale, exposed in the Buz?u Valley area of the East Carpathian flysch belt, Romania, can be described in terms of the standard turbidite divisions. In addition, mud‐rich sand layers are common, both as parts of otherwise ‘normal’ sequences of turbidite divisions and as individual event beds. Eleven units, interpreted as the deposits of individual flows, were densely sampled, and 87 thin sections were point counted for grain size and mud content. S3/Ta divisions, which form the bulk of most sedimentation units, have low internal textural variability but show subtle vertical trends in grain size. Most commonly, coarse‐tail normal grading is associated with fine‐tail inverse grading. The mean grain size can show inverse grading, normal grading or a lack of grading, but sorting tends to improve upward in most beds. Fine‐tail inverse grading is interpreted as resulting from a decreasing effectiveness of trapping of fines during rapid deposition from a turbidity current as the initially high suspended‐load fallout rate declines. If this effect is strong enough, the mean grain size can show subtle inverse grading as well. Thus, thick inversely graded intervals in deep‐water sands lacking traction structures do not necessarily imply waxing flow velocities. If the suspended‐load fallout rate drops to zero after the deposition of the coarse grain‐size populations, the remaining finer grained flow bypasses and may rework the top of the S3 division, forming well‐sorted, coarser grained, current‐structured Tt units. Alternatively, the suspended‐load fallout rate may remain high enough to prevent segregation of fines, leading to the deposition of significant amounts of mud along with the sand. Mud content of the sandstones is bimodal: either 3–13% or more than 20%. Two types of mud‐rich sandstones were observed. Coarser grained mud‐rich sandstones occur towards the upper parts of S3/Ta divisions. These units were deposited as a result of enhanced trapping of mud particles in the rapidly deposited sediment. Finer grained mud‐rich units are interbedded with ripple‐laminated very fine‐grained sandy Tc divisions. During deposition of these units, mud floccules were hydraulically equivalent to the very fine sand‐ and silt‐sized sediment. The mud‐rich sandstones were probably deposited by flows that became transitional between turbidity currents and debris flows during their late‐stage evolution.  相似文献   

8.
张浩  折学森  鲁中举 《冰川冻土》2015,37(6):1571-1578
建立了粗、细粒土冻结模型, 分析了扰动三层体内部的析冰原理, 提出密闭水体的冻结-压力循环, 该循环是涎流冰发育的机理. 对饱水粗颗粒土与饱水细颗粒土的冻结模型比较表明, 饱水粗粒土在密闭体系中的冻结; 就其产生的水压力而言, 实质上就是密闭水体的冻结, 也就是水冻结成冰体积膨胀受限而产生力的问题. 这种体积膨胀产生的力导致约束结构(如薄弱层)的整体性破坏. 在公路边坡数值模拟分析的基础上, 提出边坡薄弱层破坏导致渗水是形成坡积冰的主要原因之一, 薄弱层破坏处是病害最严重的位置. 根据病害形成原理和成因分析, 并提出渗井与仰斜式排水管相结合的复合防治措施, 工后效果良好.  相似文献   

9.
台湾峡谷HD133和HD77柱状样的沉积构成和发育背景   总被引:1,自引:0,他引:1  
分别对南海东北部台湾峡谷内水深3 280 m的HD133和峡谷外水深3 378 m的HD77重力活塞柱状样进行了沉积物粒度、古生物和碳酸钙含量分析,利用AMS14C同位素测年和沉积速率初步认定是属于MIS3a以来的沉积。按沉积物粒度和碳酸钙含量可将两支柱状样划分为3套沉积层段:上部层段1和下部层段3均以粉砂质黏土为主,夹薄层粉砂,深水底栖有孔虫含量高,碳酸钙低于10%,代表受重力流作用较弱的正常深海沉积;中部层段2发育一套以中-细粒为主的厚砂层,含大量浅水底栖有孔虫,碳酸钙含量可高达60%,AMS14C测年出现倒置现象,表明主要为浅水重力流沉积。柱状样的沉积构成响应同期海平面变化,特别表现在深水砂层沉积的两大控制因素:在时间上,低海平面时期大量浅水和陆源碎屑物质直接输送到陆坡之下的深水区,形成富砂的层段2;在空间上,峡谷水道是重力流的物质输送通道,地形优势使得重力流携带物优先在水道中发生沉积,造成HD133柱的含砂量明显高于HD77柱状样。  相似文献   

10.
Subaqueous tuff deposits within the lower Miocene Lospe Formation of the Santa Maria Basin, California, are up to 20 m thick and were deposited by high density turbidity flows after large volumes of ash were supplied to the basin and remobilized. Tuff units in the Lospe Formation include a lower lithofacies assemblage of planar bedded tuff that grades upward into massive tuff, which in turn is overlain by an upper lithofacies assemblage of alternating thin bedded, coarse grained tuff beds and tuffaceous mudstone. The planar bedded tuff ranges from 0.3 to 3 m thick and contains 1-8 cm thick beds that exhibit inverse grading, and low angle and planar laminations. The overlying massive tuff ranges from 1 to 10 m thick and includes large intraclasts of pumiceous tuff and stringers of pumice grains aligned parallel to bedding. The upper lithofacies assemblage of thin bedded tuff ranges from 0.4 to 3 m thick; individual beds are 6-30 cm thick and display planar laminae and dewatering structures. Pumice is generally concentrated in the upper halves of beds in the thin bedded tuff interval. The association of sedimentary structures combined with semi-quantitative analysis for dispersive and hydraulic equivalence of bubble-wall vitric shards and pumice grains reveals that particles in the planar bedded lithofacies are in dispersive, not settling, equivalence. This suggests deposition under dispersive pressures in a tractive flow. Grains in the overlying massive tuff are more closely in settling equivalence as opposed to dispersive equivalence, which suggests rapid deposition from a suspended sediment load. The set of lithofacies that comprises the lower lithofacies assemblage of each of the Lospe Formation tuff units is analogous to those of traction carpets and subsequent suspension sedimentation deposits often attributed to high density turbidity flows. Grain distributions in the upper thin bedded lithofacies do not reveal a clear relation for dispersive or settling equivalence. This information, together with the association of sedimentary features in the thin bedded lithofacies, including dewatering structures, suggests a combination of tractive and liquefied flows. Absence of evidence for elevated emplacement temperatures (e.g. eutaxitic texture or shattered crystàls) suggests emplacement of the Lospe Formation tuff deposits in a cold state closely following pyroclastic eruptions. The tuff deposits are not only a result of primary volcanic processes which supplied the detritus, but also of processes which involved remobilization of unconsolidated ash as subaqueous sediment gravity flows. These deposits provide an opportunity to study the sedimentation processes that may occur during subaqueous volcaniclastic flows and demonstrate similarities with existing models for sediment gravity flow processes.  相似文献   

11.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

12.
Experiments demonstrate that fluid escape structures can be produced as a result of unstable fluidization behaviour where a lower base layer of granular material is inhibited from fluidizing by the presence of an overlying non-fluidizing top layer. Before the base layer can fluidize the weight of the overlying material must be balanced, and this is accomplished by base layer material pressing against the bottom surface of the confining top layer forming a static layer. This static layer allows the top layer to lift away from the base layer which is then free to fluidize. A water-filled crack forms below the static layer and, as this grows, instability causes the static layer and top layer to bend and conical voids to form below the antiformal sections. Rupture occurs at the apex of the water void, allowing the underlying water and fluidizing material to burst out through the top layer. The fluidized base layer material then flows through the rupture until all of this material, except that in the static layer, is deposited above the previously overlying layer and a stable fluidization system results. The top layer material is bent upwards around the rupture, and the resulting pillar-type escape structure is preserved if flow then ceases. The vigour of the burst-out is greatest when the base layer material has a grain size 15% of the top layer material. If the base layer grain size is less than 8% of the top layer then base layer material will pass through the top layer pore spaces, without forming an escape structure. If cohesive material is present, escape structures form when a layer of fine grained cohesive material overlies a layer of cohesionless material. At low flow rates small pipes with scattered angular bends pierce the top layer, and base layer material passes through them. The base layer material is ejected on to the top layer and builds up around the mouth of each pipe to form constructional structures, sand volcanoes. This is in contrast to the cohesionless experiments, where the weight of material being deposited on the top layer caused an ejecta-filled depression to form around the rupture. If flow then ceases both the pipes and the sand volcanoes are preserved. At high flow rates, where the base layer fluidizes, the top cohesive layer becomes fragmented. Small fragments circulate within the fluidizing base layer and are preserved as floating clasts. Large fragments sink to the bottom of the fluidizing base layer. Erosion of the bottom surface of these larger fragments causes this surface to become convex downward. The experimentally derived structures are similar to pillar-type structures observed in the field and the processes described can be used to investigate the development of these structures. Fluidization experiments also demonstrate the genesis of dish structures, and the cohesive behaviour can be applied to the deformation of these structures after initial formation.  相似文献   

13.
ANDREAS WETZEL 《Sedimentology》2009,56(7):1992-2009
Following the eruption of Mount Pinatubo on 15 June 1991, volcanic ash was transported westward to the South China Sea in an atmospheric plume, falling out and settling to the sea floor within days and forming an up to 10 cm thick layer on an area >400 000 km2. Immediately after deposition, surviving deep‐burrowing animals re‐opened their connection to the sea floor to obtain water for respiration and/or food take‐up. Later, small‐sized meiofauna and then macrofauna re‐colonized the sea floor, mixing newly deposited organic fluff with the underlying ash. Consequently, ash deposits thinner than 1 mm have not often been observed as a continuous layer when cored six years after the eruption, while ash about 2 mm thick is now patchily bioturbated. In areas covered by ash thicker than 5 mm, mixing by benthic animals is controlled mainly by the adaptation of the burrowing fauna to variations in grain‐size, the rate of background sedimentation, the availability of benthic food on and within the sediment and pore water oxygen levels. With respect to these factors, four provinces can be distinguished: (i) Along the Philippines margin run‐off from land fuels primary production that, in turn, leads to a high benthic food content. The benthic fauna is adapted to a variable grain‐size and rapid sedimentation. Therefore, mixing is intense and the preservation potential of the ash layer is low. (ii) In areas affected by deposition of hyperpycnites and turbidites, i.e. in canyons in front of river mouths and in the Manila Trench, the ash layer is preserved due to rapid burial. (iii) The area to the west to about 116° E receives low amounts of benthic food, benthic mixing is less intense and the preservation potential of the ash is high. (iv) The central South China Sea, where the ash is thinner than 3 cm, is affected by intense wind mixing and upwelling and the benthic food content is high; thus, the chance that the ash will be preserved as a sharp‐based layer is low. Consequently, the style of ash preservation has palaeo‐environmental significance. Older buried and burrowed event layers provide further information to elucidate the fate of the 1991 Pinatubo ash layer; in general their appearance fits with observations in the Recent.  相似文献   

14.
Intervals of soft‐sediment deformation features, including vertical fluid escape and load structures, are common and well‐exposed in Permian lower slope deposits of the Tanqua Depocentre, Karoo Basin. The structures mainly comprise elongated flames and load structures associated with ruptured sandstones and structureless siltstones, observed over a range of scales. The presence of an upper structureless siltstone layer linked to the flames, interpreted as a product of the debouching of fine‐grained material transported through the flame onto the palaeo‐seabed, together with the drag and upward folding of lower sandstone layers is evidence that the flames were formed in situ by upward movement of sediment‐rich fluids. Flames are oriented parallel to the deep‐water palaeoslope in lateral splay deposits between two major slope channel complexes. Statistical correlation and regression analyses of 180 flame structures from seven stratigraphic intervals suggest a common mechanism for the deformation and indicate the importance of fluidization as a deformation mechanism. Importantly, deformation occurred in an instantaneous and synchronous manner. Liquefaction and fluidization were triggered by incremental movement of sediment over steeper local gradients that were generated by deposition of a lateral splay on an inherited local north‐west‐facing slope. Seismic activity is not invoked as a trigger mechanism because of the restricted spatial occurrence of these features and the lack of indications of earthquakes during the time of deposition of the deep‐water succession. The driving mechanisms that resulted in the final configuration of the soft‐sediment deformation structures involved a combination of vertical shear stress caused by fluidization, development of an inverse density gradient and a downslope component of force associated with the local slope. Ground‐penetrating radar profiles confirm the overall north‐east orientation of the flame structures and provide a basis for recognition of potential larger‐scale examples of flames in seismic reflection data sets.  相似文献   

15.
The Antarctic Peninsula is one of the most sensitive regions of Antarctica to climate change. Here, ecological and cryospheric systems respond rapidly to climate fluctuations. A 4.4 m thick laminated diatom ooze deposited during the last deglaciation is examined from a marine sediment core (ODP Site 1098) recovered from Basin I, Palmer Deep, western Antarctic Peninsula. This deglacial laminated interval was deposited directly over a glaciomarine diamict, hence during a globally recognised period of rapid climate change. The ultra‐high‐resolution deglacial record is analysed using SEM backscattered electron imagery and secondary electron imagery. Laminated to thinly bedded orange‐brown diatom ooze (near monogeneric Hyalochaete Chaetoceros spp. resting spores) alternates with blue‐grey terrigenous sediments (open water diatom species). These discrete laminae are interpreted as austral spring and summer signals respectively, with negligible winter deposition. Sub‐seasonal sub‐laminae are observed repeatedly through the summer laminae, suggesting variations in shelf waters throughout the summer. Tidal cycles, high storm intensities and/or intrusion of Circumpolar Deep Water onto the continental shelf introduced conditions which enhanced specific species productivity through the season. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
粗粒土压实特性及颗粒破碎分形特征试验研究   总被引:3,自引:0,他引:3  
杜俊  侯克鹏  梁维  彭国诚 《岩土力学》2013,34(Z1):155-161
对多个级配不同含水率的粗粒土进行击实试验,研究粗粒土的压实特性和颗粒破碎分形特征。结果表明,粗粒土最大干密度随级配中粗粒含量的增大而增大,当粗粒含量P5=70%时,最大干密度出现最大值;当P5>70%时,最大干密度又随粗粒含量的增大而减小,粗粒土击实破碎后的粒径分布具有良好的分形特性,破碎分形维数为2.279 0~2.892 2,均大于击实前粗粒土粒度分形维数;相同级配条件下,粗粒土破碎分形维数随含水率的增大而增大,且粗粒含量P5>50%时,增幅显著;粗粒土破碎分形维数D与破碎率Bg存在良好的线性关系,且击实前后粗粒土粒度分形维数差值能客观表征颗粒破碎的程度;粗粒含量和含水率是影响颗粒破碎率的两个重要因素,但相对于含水率而言,粗粒含量对破碎率的影响更加显著。  相似文献   

17.
Turbidite sandstones of the Miocene Marnoso‐arenacea Formation (northern Apennines, Italy) display centimetre to decimetre long, straight to gently curved, 0·5 to 2·0 cm regularly spaced lineations on depositional (stratification) planes. Sometimes these lineations are the planform expression of sheet structures seen as millimetre to centimetre long vertical ‘pillars’ in profile. Both occur in the middle and upper parts of medium‐grained and fine‐grained sandstone beds composed of crude to well‐defined stratified facies (including corrugated, hummocky‐like, convolute, dish‐structured and dune stratification) and are aligned sub‐parallel to palaeoflow direction as determined from sole marks often in the same beds. Outcrops lack a tectonic‐related fabric and therefore these structures may be confidently interpreted to be sedimentary in origin. Lineations resemble primary current lineations formed by the action of turbulence during bedload transport under upper stage plane bed conditions. However, they typically display a larger spacing and micro‐topography compared to classic primary current lineations and are not associated with planar‐parallel, finely laminated sandstones. This type of ‘enhanced lineation’ is interpreted to develop by the same process as primary current lineations, but under relatively high near‐bed sediment concentrations and suspended load fallout rates, as supported by laboratory experiments and host facies characteristics. Sheets are interpreted to be dewatering structures and their alignment to palaeoflow (only noted in several other outcrops previously) inferred to be a function of vertical water‐escape following the primary depositional grain fabric. For the Marnoso‐arenacea beds, sheet orientation may be linked genetically to the enhanced primary current lineation structures. Current‐aligned lineation and sheet structures can be used as palaeoflow indicators, although the directional significance of sheets needs to be independently confirmed. These indicators also aid the interpretation of dewatered sandstones, suggesting sedimentation under a traction‐dominated depositional flow – with a discrete interface between the aggrading deposit and the flow – as opposed to under higher concentration grain or hindered‐settling dominated regimes.  相似文献   

18.
《Quaternary Research》2013,79(2):228-241
Two fundamental issues for tephrostratigraphic work are the differentiation of primary from reworked tephra and the characterization of reworking mechanisms. We study the depositional processes of four deposits of Youngest Toba Tuff in the Lenggong valley, Malaysia. We focus on site stratigraphy, particle-size distributions, magnetic susceptibility and mineralogical associations. Reworked tephra display variable sedimentological characteristics including polymodal and unimodal, very fine to coarse-grained distributions, and variable concentrations of ash. Particle-size distributions from this study are similar to published analyses for primary deposits, demonstrating that particle size alone cannot distinguish primary from secondary tephra. The tephra sequences are associated with fluvial and colluvial deposition. Three facies are identified: flood flow, mudflow and slumping. The ash accumulated rapidly, over a period of a few days to months. In this valley the ideal site for paleoenvironmental reconstructions is Kampung Luat 3, where ash accumulated at least in two distinct phases. Despite the rapid accumulation, the Lenggong sites are not well-suited for paleoenvironmental studies of the YTT impact. The time lag between the primary deposition and the floods is unknown and the records could have been modified by site-specific characteristics. Such variables should be considered when proposing paleo-environmental reconstructions based on reworked tephra.  相似文献   

19.

The Upper Cambrian Owen Conglomerate of the West Coast Range, western Tasmania, comprises two upward‐fining successions of coarse‐grained siliciclastic rocks that exhibit a characteristic wedge‐shaped fill controlled by the basin‐margin fault system. Stratigraphy is defined by the informally named basal lower conglomerate member, middle sandstone member, middle conglomerate member and upper sandstone member. The lower conglomerate member has a gradational basal contact with underlying volcaniclastics of the Tyndall Group,while the upper sandstone member is largely conformable with overlying Gordon Group marine clastics and carbonates. The lower conglomerate member predominantly comprises high flow regime, coarse‐grained, alluvial‐slope channel successions, with prolonged channel bedload transport exhibited by the association of channel‐scour structures with upward‐fining packages of pebble, cobble and boulder conglomerate and sandstone, with abundant large‐scale cross‐beds derived from accretion in low‐sinuosity, multiply active braided‐channel complexes. While the dipslope of the basin is predominantly drained by west‐directed palaeoflow, intrabasinal faulting in the southern region of the basin led to stream capture and the subsequent development of axial through drainage patterns in the lower conglomerate member. The middle sandstone member is characterised by continued sandy alluvial slope deposition in the southern half of the basin, with pronounced west‐directed and local axial through drainage palaeoflow networks operating at the time. The middle sandstone member basin deepens considerably towards the north, where coarse‐grained alluvial‐slope deposits are replaced by coarse‐grained turbidites of thick submarine‐fan complexes. The middle conglomerate member comprises thickly bedded, coarse‐grained pebble and cobble conglomerate, deposited by a high flow regime fluvial system that focused deposition into a northern basin depocentre. An influx of volcanic detritus entered the middle conglomerate member basin via spatially restricted footwall‐derived fans on the western basin margin. Fluvial systems continued to operate during deposition of the upper sandstone member in the north of the basin, facilitated by multiply active, high flow regime channels, comprising thick, vertically stacked and upward‐fining, coarse‐grained conglomerate and sandstone deposits. The upper sandstone member in the south of the basin is characterised by extensive braid‐delta and fine‐grained nearshore deposits, with abundant bioturbation and pronounced bimodal palaeocurrent trends associated with tidal and nearshore reworking. An increase in base‐level in the Middle Ordovician culminated in marine transgression and subsequent deposition of Gordon Group clastics and carbonates.  相似文献   

20.
Successions of Early Eocene coarse-grained turbidites up to 400 m thick fill fault-controlled canyons along the eastern Brazilian continental margin. They form part of a Late Albian to Early Eocene transgressive succession characterized by onlapping, deepening-upward sedimentation. In the Lagoa Parda oil field (Regência Canyon, Espírito Santo Basin) the turbidite facies consist mostly of unstratified conglomerate and sandstone, with interbedded bioturbated mudstone and thin-bedded, stratified sandstone. Within the main Regência Canyon, the coarser grained facies occur within 38 deeply incised channels. The fills are 9 to >50 m thick, 210 to >1050 m wide and >1 km long. The finer grained facies build asymmetrical levees that are higher and thicker on the left side (looking downstream) of their channels, probably as an effect of the Coriolis force (to the left in the Southern Hemisphere). Nine levee successions up to 50 m thick are associated with the 20 youngest channels. The deposits filling the low-sinuosity Lagoa Parda channels record successive channel abandonment through relatively rapid avulsions. Avulsions of unleveed channels took place randomly, but channels with well-developed levees show preferential avulsion to the right (looking downstream), opposite to the direction of preferential levee growth. Lagoa Parda channels can be grouped into three complexes 20–100 m thick. These complexes have an estimated duration of about 140 000 years. It is suggested that control of the development of individual channel complexes was related to variation in sediment supply, in turn probably related to climatic changes. The deposition of each channel complex would have followed an increase in sediment supply into the Regência Canyon through delta/fan-delta and littoral drift systems, which in turn would have responded to phases of higher denudation rates in the high-relief, ancestral coastal ranges of south-eastern Brazil. Overall, the three Lagoa Parda channel complexes form a turbidite succession characterized by channel fills that become narrower, thinner and finer grained upward. These trends were induced mostly by a longer term (>400 000 years) decrease in sediment supply, which in turn resulted from the combined effects of a long-term (second-order) trend of sea-level rise, and the decreasing fault activity at the basin margin and source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号