首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This study proposes a probabilistic analysis method for modeling rainfall-induced shallow landslide susceptibility by combining a transient infiltration flow model and Monte Carlo simulations. The spatiotemporal change in pore water pressure over time caused by rainfall infiltration is one of the most important factors causing landslides. Therefore, the transient infiltration hydrogeological model was adopted to estimate the pore water pressure within the hill slope and to analyze landslide susceptibility. In addition, because of the inherent uncertainty and variability caused by complex geological conditions and the limited number of available soil samples over a large area, this study utilized probabilistic analysis based on Monte Carlo simulations to account for the variability in the input parameters. The analysis was performed in a geographic information system (GIS) environment because GIS can deal efficiently with a large volume of spatial data. To evaluate its effectiveness, the proposed analysis method was applied to a study area that had experienced a large number of landslides in July 2006. For the susceptibility analysis, a spatial database of input parameters and a landslide inventory map were constructed in a GIS environment. The results of the landslide susceptibility assessment were compared with the landslide inventory, and the proposed approach demonstrated good predictive performance. In addition, the probabilistic method exhibited better performance than the deterministic alternative. Thus, analysis methods that account for uncertainties in input parameters are more appropriate for analysis of an extensive area, for which uncertainties may significantly affect the predictions because of the large area and limited data.  相似文献   

2.
Bivariate and multivariate statistical analyses were used to predict the spatial distribution of landslides in the Cuyahoga River watershed, northeastern Ohio, U.S.A. The relationship between landslides and various instability factors contributing to their occurrence was evaluated using a Geographic Information System (GIS) based investigation. A landslide inventory map was prepared using landslide locations identified from aerial photographs, field checks, and existing literature. Instability factors such as slope angle, soil type, soil erodibility, soil liquidity index, landcover pattern, precipitation, and proximity to stream, responsible for the occurrence of landslides, were imported as raster data layers in ArcGIS, and ranked using a numerical scale corresponding to the physical conditions of the region. In order to investigate the role of each instability factor in controlling the spatial distribution of landslides, both bivariate and multivariate models were used to analyze the digital dataset. The logistic regression approach was used in the multivariate model analysis. Both models helped produce landslide susceptibility maps and the suitability of each model was evaluated by the area under the curve method, and by comparing the maps with the known landslide locations. The multivariate logistic regression model was found to be the better model in predicting landslide susceptibility of this area. The logistic regression model produced a landslide susceptibility map at a scale of 1:24,000 that classified susceptibility into four categories: low, moderate, high, and very high. The results also indicated that slope angle, proximity to stream, soil erodibility, and soil type were statistically significant in controlling the slope movement.  相似文献   

3.
This study aims at contributing to the soil slip susceptibility assessment in a typical basin of the southern Apuan Alps, Italy. On June 1996, this basin (Cardoso Torrent, 13 km2 large) was hit by an extremely heavy rainstorm (maximum intensity of about 160 mm/h), which caused many landslides (debris slide–debris flows) and valley bottom flows (hyperconcentrated flows), destruction and deaths. Detailed surveys provided the characterization of the main factors (geological, geomorphologic, hydrological, hydrogeological and geotechnical) which contributed in triggering landslides. In order to evaluate the soil slip susceptibility in this area, a physically based model was applied and a GIS analysis of digital elevation model was performed. This approach couples a mechanical model based on an infinite slope form of the Mohr–Coulomb failure criterion, and a steady-state hydrological one (a modified version of Shalstab, which considers the cohesion of the debris material potentially involved in landsliding). GIS techniques allowed evaluating the effects of topographic convergence and drainage area on slope failure. In this way, based on the infiltration rate, the triggering of the June 1996 landslides was simulated and the critical rainfall thresholds assessed at about 200–250 mm/24 h.  相似文献   

4.
基于滑坡分类的西宁市滑坡易发性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
以往的滑坡易发性评价多以全体滑坡为研究对象,忽视了滑坡类型的区别。各评价指标对不同类型滑坡的影响程度不同,也导致指标权重无法精确地反映其对滑坡的影响。为更准确地对滑坡灾害进行空间预测,针对西宁市滑坡特征及发育机理,将全区滑坡分为土质滑坡和岩质滑坡;在野外实际调查的基础上,结合相关性分析,选取坡度、坡向、剖面曲率、平面曲率、工程地质岩组,以及滑坡点距断层、水系、道路的距离远近等8项因素作为滑坡易发性评价指标,并通过滑坡点分布密度和滑坡点相对分布密度,分析各评价指标分别对土质滑坡和岩质滑坡的影响;利用信息量模型,计算各评价指标对两类滑坡的信息量值,利用人工神经网络模型,赋予各评价指标对两类滑坡的权重;最后基于GIS平台利用加权信息量模型对研究区进行易发性评价。通过统计方法和ROC曲线法分别计算滑坡易发性评价成功率,结果表明:评价成功率可达到82.61%和82.30%,与未经滑坡分类的成功率比较,分别提高了10.9%和5.2%;同时,经过滑坡分类后,湟水河两岸地质条件较差的地区转变为滑坡高易发区。  相似文献   

5.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

6.
2010年4月14日07时49分(北京时间),青海省玉树县发生了Ms7.1级大地震。作者基于高分辨率遥感影像解译与现场调查验证的方法,圈定了2036处本次地震诱发滑坡。这些滑坡受地震地表破裂控制强烈,规模相对较小,常常密集成片分布。滑坡类型多样,以崩塌型滑坡为主,还包括滑动型、流滑型、碎屑流型、复合型等类型的滑坡。本文基于地理信息系统(GIS)与遥感(RS)技术,应用逻辑回归模型开展玉树地震滑坡危险性评价,并对结果合理性进行检验。应用GIS技术建立玉树地震滑坡灾害及相关滑坡影响因子空间数据库,选择高程、斜坡坡度、斜坡坡向、斜坡曲率、与水系距离、坡位、断裂、地层岩性、归一化植被指数(NDVI)、公路、同震地表破裂、地震动峰值加速度(PGA)共12个因子作为玉树地震滑坡影响因子,在GIS平台下将这些因子专题图层栅格化。应用逻辑回归模型得到每个因子分级的回归系数,然后建立滑坡危险性指数分布图。利用玉树地震滑坡空间分布图对滑坡危险性指数图进行检验,正确率达到83.21%。滑坡危险性分级结果表明,在占研究区总面积4.97%的"很高危险度"的较小范围内,实际发育滑坡数量为766个,占总滑坡面积的比例高达37.62%,表明地震滑坡危险性评价结果良好。不同危险性级别的滑坡点密度统计结果表明,滑坡点密度随着危险性级别的升高而非常迅速的升高。  相似文献   

7.
Transient seepage in unsaturated soil slope is one of the significant triggering factors in rainfall-induced landslides. Rainfall infiltration leads to the decrease in stabilizing effect because of increased positive pore-water pressures. SEEP/W and SLOPE/W used in this study have been widely employed to describe frameworks for understanding transient seepage in soil slope, and to perform slope stability analyses, respectively. The study area is in Sichon District in Nakhon Si Thammarat Province, southern Thailand. A landslide there was investigated by modeling the process of rainfall infiltration under positive and negative pore-water pressures and their effects on slope stability. GIS (Geographic Information System) and geotechnical laboratory results were used as input parameters. The van Genuchten’s soil water characteristic curve and unsaturated permeability function were used to estimate surface infiltration rates. An average rainfall was derived from 30-year monthly rainfall data between 1981 and 2011 in this area reported by the Thailand Royal Irrigation Department. For transient condition, finite element analysis in SEEP/W was employed to model fluctuations in pore-water pressure during a rainfall, using the computed water infiltration rates as surface boundary conditions. SLOPE/W employing Bishop simplified method was then carried out to compute their factors of safety, and antecedent precipitation indices (API) calculated. Heterogeneous slope at the site became unstable at an average critical API (APIcr) of 380 mm, agreeing well with the actual value of 388 mm.  相似文献   

8.
During the last decades, damages to houses caused by landslides have been consistently occurring in a residential area in Öschingen/Germany. The residential area is located in ductile Callovian clays (Jurassic). Furthermore, in the back slope of the research area, a large Pleistocene slide mass negatively influences the slope stability. Through an integrative approach, the maximum data available for the study area was compiled in order to create a susceptibility map for landslide hazard. Detailed geomorphological field survey provided a valuable base for the assessment of slope stability using Stability Index Mapping (SINMAP). In the framework of long-term studies, consolidated results concerning mass movements and climatic-driven Pleistocene slope evolution, as well as recent slope dynamics, could be gained. These outcomes are compared to the results provided by slope stability modelling with SINMAP. The calculations outline some parameters responsible for higher risks. In general, the interaction of topography, water balances and substrate at the Schönberger Kapf can be designated to cause instability in wide areas. Hydrological parameters are essential for destabilisation of slope and they cause at least temporally destabilisation along channel structures, which presumably are influenced by seasonally increased spring discharge and a reduction in the underground shear strength. The exceptional dimension of the rotational block in connection with the specific slope hydrologic conditions and the intensive anthropogenic impact in the rear slope of the building area Auchtert in Öschingen has to be termed very problematic on the basis of the studies carried out.  相似文献   

9.
The crucial and difficult task in landslide susceptibility analysis is estimating the probability of occurrence of future landslides in a study area under a specific set of geomorphic and topographic conditions. This task is addressed with a data-driven probabilistic model using likelihood ratio or frequency ratio and is applied to assess the occurrence of landslides in the Tevankarai Ar sub-watershed, Kodaikkanal, South India. The landslides in the study area are triggered by heavy rainfall. Landslide-related factors—relief, slope, aspect, plan curvature, profile curvature, land use, soil, and topographic wetness index proximity to roads and proximity to lineaments—are considered for the study. A geospatial database of the related landslide factors is constructed using Arcmap in GIS environment. Landslide inventory of the area is produced by detailed field investigation and analysis of the topographical maps. The results are validated using temporal data of known landslide locations. The area under the curve shows that the accuracy of the model is 85.83%. In the reclassified final landslide susceptibility map, 14.48% of the area is critical in nature, falling under the very high hazard zone, and 67.86% of the total validation dataset landslides fall in this zone. This landslide susceptibility map is a vital tool for town planning, land use, and land cover planning and to reduce risks caused by landslides.  相似文献   

10.
采用基于网格的瞬态降雨入渗(TRIGRS)模型,以滑坡灾害频发的陕南安康市东部巴山东段白河县为研究区,探讨模型适用性及不同降雨条件下边坡稳定性空间分布规律。根据中国土壤分布图并结合已有研究,选取模拟所需的水土力学参数。将模拟所得研究区稳定性分布图与实际滑坡目录对比分析进行TRIGRS模型精度评估,分别模拟连阴雨和短时间强降雨两种降雨情景,探讨研究区边坡稳定性空间分布规律,结果表明:1)TRIGRS模型在模拟预测降雨诱发型浅层滑坡时,结合受试者特征ROC曲线进行精度评估,曲线下面积为0.752,说明此模型在白河县进行滑坡模拟时具有一定的合理性与准确性,能反应该地区滑坡灾害的空间分布特征;2)连阴雨情景模拟下,极不稳定区域主要集中在北部低山地貌区,以冷水镇和麻虎镇为主,随降雨历时增加向东部和南部增多,西部仓上镇、西营镇和双丰镇的极不稳定区域面积较少,能承受长时间连续性降雨。短时间强降雨对边坡稳定性的影响更为直接,极不稳定区域随降雨强度增大而增加,以冷水镇和麻虎镇为主要防范区域。结合地形分析,极陡峭区域边坡稳定性最差,无法承受持续性降雨和高强度降雨,较陡峭区域更易受到降雨历时和降雨强度的影响,而平缓区域则能承受长时间及高强度的降雨;3)TRIGRS模型根据不同降雨条件预测易发生滑坡灾害的区域,为滑坡实时预报警系统提供了新的可能方法。  相似文献   

11.
Landslides are one of the most common and a destructive natural hazard in mountainous terrain and thus evaluating their potential locations and the conditions under which they may occur is crucial for their hazard assessment.Shallow landslide occurrence in soil and regolith covered slopes are often modeled using the infinite slope model,which characterizes the slope stability in terms of a factor of safety(FS) value.Different approaches have been followed to also assess and propagate uncertainty through such models.Haneberg(2004) introduced the use of the First Order Second Moment(FOSM) method to propagate input uncertainty through the infinite slope model,further developing the model and implementing it in the PISA-m software package(Haneberg,2007).Here we present an ArcPy implementation of PISA-m algorithms,which can be run from ESRI ArcMap in an entirely consistent georeferenced framework,and which we call "GIS Tool for Infinite Slope Stability Analysis"(GIS-TISSA).Users can select between different input options,e.g.,following a similar input style as for PISA-m,i.e., using an ASCII.csv parameters input file,or providing each input parameter as a raster or constant value,through the program graphic user interface.Analysis outputs can include FS mean and standard deviation estimates,the probability of failure(FS <1), and a reliability index(RI) calculation for FS.Following the same seismic analysis approach as in PISA-m, the Newmark acceleration can also be done,for which raster files of the mean,standard deviation,probability of exceedance,and RI are also generated.Verification of the code is done by replicating the results obtained with the PISA-m code for different input options,within a 10-5 relative error.Monte Carlo modeling is also applied to validate GIS-TISSA outputs,showing a good overall correspondence.A case study was performed for Kannur district,Kerala,India,where an extensive landslide databa se for the year 2018 was available.81.19% of the actual landslides fell in zones identified by the model as unstable.GIS-TISSA provides a user-friendly interface,particularly for those users familiar with ESRI ArcMap,that is fully embedded in a GIS framework and which can then be used for further analysis without having to change software platforms and do data conversions.The ArcPy toolbox is provided as a.pyt file as an appendix as well as hosted at the weblink:https://pages.mtu.edu/~toommen/GeoHazard.html.  相似文献   

12.
The major scope of the study is the assessment of landslide susceptibility of Flysch areas including the Penninic Klippen in the Vienna Forest (Lower Austria) by means of Geographical Information System (GIS)-based modelling. A statistical/probabilistic method, referred to as Weights-of-Evidence (WofE), is applied in a GIS environment in order to derive quantitative spatial information on the predisposition to landslides. While previous research in this area concentrated on local geomorphological, pedological and slope stability analyses, the present study is carried out at a regional level. The results of the modelling emphasise the relevance of clay shale zones within the Flysch formations for the occurrence of landslides. Moreover, the distribution of mass movements is closely connected to the fault system and nappe boundaries. An increased frequency of landslides is observed in the proximity to drainage lines, which can change to torrential conditions after heavy rainfall. Furthermore, landslide susceptibility is enhanced on N-W facing slopes, which are exposed to the prevailing direction of wind and rainfall. Both of the latter geofactors indirectly show the major importance of the hydrological conditions, in particular, of precipitation and surface runoff, for the occurrence of mass movements in the study area. Model performance was checked with an independent validation set of landslides, which are not used in the model. An area of 15% of the susceptibility map, classified as highly susceptible, “predicted” 40% of the landslides.  相似文献   

13.
Landslides are a major natural hazard in the Bamenda highlands of Cameroon, and their occurrence in this region has most often been studied using qualitative methods. The aim of this research is to quantitatively assess the spatial probability of landslides using GIS and the informative value model. Landslide inventory was done through literature review, aerial photo-interpretation, participatory GIS and field survey. Six geo-environmental factors including slope, curvature, aspect, land use, lithology and geomorphology were used as landslide conditioning (static) factors. The susceptibility of the area to future landslide events was assessed by making a correlation between past landslides and geo-environmental factors using the informative value model. The landslide inventory involving 110 landslides was divided into two equal groups using random division criterion and was used to train and validate the model. The analysis showed that slope and land use are the most important causal factors of landslides in the area. The susceptibility index map predicted most landslides to occur around the steep slopes of the Bamenda escarpment that is being used for multiple anthropic activities. The training model had a success rate of 87%, and the validation model had a prediction rate of 90%. The prediction rate curve shows that 44, 32, 18 and 6% of future landslides will occur on 3, 8, 21 and 68% of the study area. The model correctly classified 89% of unstable areas and 81% of the stable areas with an accuracy rate of 0.90. This quantitative result complement other qualitative assessment results that show the Bamenda escarpment zone as a high-risk area. However, the area susceptible to landslide in this study goes beyond what earlier studies had indicated as houses and other infrastructure were found on old landslide sites whose scars have been eroded by human activities. This new input thus improves the quality of information placed at the disposal of civil protection units and land use managers during decision making.  相似文献   

14.
汶川地震在区内诱发了大量滑坡、崩塌等地质灾害,且孕育了大量松动岩体,这些松动岩体在降雨等因素诱发下将会产生大量次生地质灾害,危险性极大。故此对汶川县进行地质灾害易发性评价具有十分重要的现实意义。本文选取高程、坡度、坡向、起伏度、沟谷密度、工程岩组、断层、水系、道路9个影响因子,基于GIS的栅格数据模型,采用信息量模型、Logistic回归模型以及两种模型耦合分析进行地质灾害易发性评价。研究结果表明,采用耦合模型较信息量或Logistic单一模型评价结果更加合理、精度更高;易发性高与较高区域多集中于水系延展区域与断层集中区域。所计算得出的易发性分区结果与研究区实际情况相近,能在地质灾害风险评价中起到重要参考作用。  相似文献   

15.
Precipitation frequently triggers shallow landslides in the Loess Plateau of Shaanxi, China, resulting in loss of life, damage to gas and oil routes, and destruction of transport infrastructure and farmland. To assess the possibility of shallow landslides at different precipitation levels, a method to draw slope units and steepest slope profiles based on ARCtools and a new method for calculating slope stability are proposed. The methods were implemented in a case study conducted in Yan’an, north-west China. High resolution DEM (Digital Elevation Model) images, soil parameters from in-situ laboratory measurements and maximum depths of precipitation infiltration were used as input parameters in the method. Next, DEM and reverse DEM were employed to map 2146 slope units in the study area, based on which the steepest profiles of the slope units were constructed. Combining analysis of the water content of loess, strength of the sliding surface, its response to precipitation and the infinite slope stability equation, a new equation to calculate infinite slope stability is proposed to assess shallow landslide stability. The slope unit stability was calculated using the equation at 10-, 20-, 50- and 100-year return periods of antecedent effective precipitation. The number of slope units experiencing failure increased in response to increasing effective antecedent rainfall. These results were validated based on the occurrence of landslides in recent decades. Finally, the applicability and limitations of the model are discussed.  相似文献   

16.
A spatial database of 791 landslides is analyzed using GIS to map landslide susceptibility in Tsugawa area of Agano River. Data from six landslide-controlling parameters namely lithology, slope gradient, aspect, elevation, and plan and profile curvatures are coded and inserted into the GIS. Later, an index-based approach is adopted both to put the various classes of the six parameters in order of their significance to the process of landsliding and weigh the impact of one parameter against another. Applying primary and secondary-level weights, a continuous scale of numerical indices is obtained with which the study area is divided into five classes of landslide susceptibility. Slope gradient and elevation are found to be important to delineate flatlands that will in no way be subjected to slope failure. The area which is at high scale of susceptibility lies on mid-slope mountains where relatively weak rocks such as sandstone, mudstone and tuff are outcropping as one unit.  相似文献   

17.
We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.  相似文献   

18.
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover, distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area. The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   

19.
The purpose of this study is to assess the susceptibility of landslides around Yomra and Arsin towns near Trabzon, in northeast of Turkey, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analyses of the topographical map. The landslide triggering factors are considered to be slope angle, slope aspect, distance from drainage, distance from roads and the weathered lithological units, which were called as “geotechnical units” in the study. Idrisi and ArcGIS packages manipulated all the collected data. Logistic regression (LR) and weighted linear combination (WLC) statistical methods were used to create a landslide susceptibility map for the study area. The results were assessed within the scope of two different points: (a) effectiveness of the methods used and (b) effectiveness of the environmental casual parameters influencing the landslides. The results showed that the WLC model is more suitable than the LR model. Regarding the casual parameters, geotechnical units and slopes were found to be the most important variables for estimating the landslide susceptibility in the study area.  相似文献   

20.
黄土高原区地形与植被分布规律对滑坡发生概率的影响   总被引:1,自引:0,他引:1  
殷昊  刘飞  杜立新  隋松宇 《现代地质》2010,24(5):1016-1021
黄土高原区自然斜坡的地形与植被条件对滑坡的发生有一定的促进和抑制作用。通过将研究区划分为31 418个自然斜坡单元,利用ArcGIS区域统计功能提取斜坡单元的地形和植被参数,分析研究区斜坡的坡体形态和植被空间分布规律。依据区内292处滑坡调查点的资料,统计分析不同坡体形态下的滑坡发生概率。分析结果表明,研究区正向类的凸型和直线型斜坡发生滑坡的概率明显高于负向类的凹型和阶梯型边坡;随着斜坡坡度和坡高增大,发生滑坡的概率增大;阳坡发生滑坡的概率明显高于其他坡向的边坡;随着NDVI增大,滑坡发生概率显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号