首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

2.
Tooeleite, nominally Fe63+(As3+O3)4(SO4)(OH)4·4H2O, is a relatively uncommon mineral of some acid-mine drainage systems. Yet, if it does occur, it does so in large quantities, indicating that some specific conditions favor the formation of this mineral in the system Fe-As-S-O-H. In this contribution, we report the thermodynamic properties of synthetic tooeleite. The sample was characterized by powder X-ray diffraction, scanning electron microscopy, extended X-ray absorption fine-structure spectroscopy, and Mössbauer spectroscopy. These methods confirmed that the sample is pure, devoid of amorphous impurities of iron oxides, and that the oxidation state of arsenic is 3+. Using acid-solution calorimetry, the enthalpy of formation of this mineral from the elements at the standard conditions was determined as −6196.6 ± 8.6 kJ mol−1. The entropy of tooeleite, calculated from low-temperature heat capacity data measured by relaxation calorimetry, is 899.0 ± 10.8 J mol−1 K−1. The calculated standard Gibbs free energy of formation is −5396.3 ± 9.3 kJ mol−1. The log Ksp value, calculated for the reaction Fe6(AsO3)4(SO4)(OH)4·4H2O + 16H+ = 6Fe3+ + 4H3AsO3 + SO42− + 8H2O, is −17.25 ± 1.80. Tooeleite has stability field only at very high activities of aqueous sulfate and arsenate. As such, it does not appear to be a good candidate for arsenic immobilization at polluted sites. An inspection of speciation diagrams shows that the predominance field of Fe3+ and As3+ overlap only at strongly basic conditions. The formation of tooeleite, therefore, requires strictly selective oxidation of Fe2+ to Fe3+ and, at the same time, firm conservation of the trivalent oxidation state of arsenic. Such conditions can be realized only by biological systems (microorganisms) which can selectively oxidize one redox-active element but leave the other ones untouched. Hence, tooeleite is the first example of an “obligatory” biomineral under the conditions prevailing at or near the Earth's surface because its formation under these conditions necessitates the action of microorganisms.  相似文献   

3.
《Applied Geochemistry》1998,13(5):651-671
Highly saline fluids were encountered during the German Continental Deep Drilling Project (KTB) from depths ranging between 2 and 3 km to about 9 km. The most reliable data were obtained from samples extracted during a long-term pumping test in the 4000-m deep KTB pilot hole. Some 460 m3 Ca–Na–Cl brines with about 68 g l−1 total dissolved solids (TDS) and some 270 m3 associated gases, mainly N2 and CH4 were pumped to the surface from the main fracture system situated near the bottom of the pilot hole. Geochemical and isotopic data support the hydraulic tests which suggest the presence of an open and large fluid reservoir at depth. The pumped fluids from this main fracture system were released from a deep reservoir situated at more than 5500 m depth which is hydraulically connected with the 9101 m deep KTB main hole, drilled some 250 m to the northeast of the pilot hole.While Ca and Sr contents of the extracted brines may be the result of water–rock interaction, Cl is most likely of external origin. The Cl is hypothesized to derive from geotectonic processes rather than to descending infiltration of paleo-seawater (evaporitic brines). The sampled fluids have probably migrated from a deeper reservoir to their present position since the Cretaceous–Tertiary period due to tectonic activity. However, several isotopic studies have identified an admixture of descending paleowaters down to more than 4000 m depth. The high 36Cl/Cl ratio of the fluids sampled during the long-term pumping test point to a host rock highly enriched in U–Th, unlike the sampled KTB country rocks. The fluid reservoir is believed to be in contact with the Falkenberg granite massif situated about 2 km to the E of the KTB holes, capable of supplying sufficient neutron flux for considerable subsurface production of 36Cl. The Na–Cl–(K-, SO4) precursor fluids of the Ca–Na–Cl brines were produced in the course of extensive tectonic processes since the Late Caledonian within the Bohemian Massif.  相似文献   

4.
An experimental study on the origin of ferric and ferrous carbonate-silicate melts, which can be considered as the potential metasomatic oxidizing agents and diamond forming media, was performed in the (Ca,Mg)CO3-SiO2-Al2O3-(Mg,Fe)(Cr,Fe,Ti)O3 system, at 6.3 GPa and 1350–1650 °C. At 1350–1450 °C and ?O2 of FMQ + 2 log units, carbonate–silicate melt, coexisting with Fe3 +-bearing ilmenite, pyrope-almandine and rutile, contained up to 13 wt.% of Fe2O3. An increase in the degree of partial melting was accompanied by decarbonation and melt enrichment with CO2, up to 21 wt.%. At 1550–1650 °C excess CO2 segregated as a separate fluid phase. The restricted solubility of CO2 in the melt indicated that investigated system did not achieve the second critical point at 6.3 GPa. At 1350–1450 °C and ?O2 close to CCO buffer, Fe2 +-bearing carbonate–silicate melt was formed in association with pyrope-almandine and Fe3 +-bearing rutile. It was experimentally shown that CO2-rich ferrous carbonate-silicate melt can be an effective waterless medium for the diamond crystallization. It provides relatively high diamond growth rates (3–5 μm/h) at P,T-conditions, corresponding to the formation of most natural diamonds.  相似文献   

5.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   

6.
A peralkaline, ultrapotassic dyke found at ?ebkovice (T?ebí? district, western Moravia) is a mineralogically extreme member of a dyke swarm occurring along the south-eastern border of the Moldanubian Region of the Bohemian Massif. The dyke shows a simple zoning, with a very fine-grained marginal zone grading into a medium-grained central zone. It has a primary mineral assemblage of microcline and potassic amphiboles, with accessory apatite and altered phlogopite. The microcline exhibits an unusual red luminescence colour and pronounced substitution of Fe3+ for Al, with measured contents of Fe2O3 up to 8.5 wt.% (0.31 apfu Fe3+). Amphiboles have very high K (up to 0.99 apfu) and Si contents; their compositions follow an alkaline fractionation trend from potassic-richterite to potassic-magnesio-arfvedsonite, characterized by an increase of Na/K and a decrease of Ca, Mg, Fe2+ and Ti via heterovalent substitutions [B]Ca + [C](Mg,Fe2+)  [B]Na + [C]Fe3+ and Ti + Mg  2Fe3+. The most evolved apatite is significantly enriched in SrO (up to 9.7 wt.%; 0.49 apfu Sr). The core of the dyke and late veinlets contain unique late- to post-magmatic Ba–Ti–Zr-bearing mineral assemblages of baotite, henrymeyerite, titanite, rutile, benitoite and bazirite. Anhedral baotite fills interstices distributed inhomogeneously in the dyke centre; it is locally replaced by a Ba-bearing titanite + henrymeyerite + rutile + quartz assemblage. Henrymeyerite (the second record in a lamproite) shows variable Fe/Ti ratios and represents a solid solution of the hepta- and hexatitanate components. Euhedral crystals of benitoite and bazirite are enclosed in the late-stage quartz–titanite–apatite veinlets in the fine-grained margin of the intrusion. In terms of a mineralogical–genetic classification, the ?ebkovice dyke can be considered as a new high-silica (~ 57 wt.% SiO2) variety of lamproite (variety ?ebkovice), and represents a unique expression of post-collisional potassic magmatism on the south-eastern border of the Bohemian Massif. The peralkaline dykes from this area show mineralogical and geochemical features similar to those of silica-rich orogenic lamproites emplaced at destructive plate margins. In terms of the modern classification of lamproites, the ?ebkovice dyke is the first lamproite recognised in the Variscan orogenic belt.  相似文献   

7.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

8.
9.
The relationship among subducted oxidized oceanic crust and oxidation state of the subarc mantle, and arc magmas is one of the important aspects to evaluate convergent margin tectonics. However details of the oxidized mass transferred from buried oceanic crust to the overlying subarc mantle wedge remain obscure. Here we investigate the Songduo eclogites from south Tibet formed by the subduction of the paleo-Tethyan oceanic crust, and identify an abrupt decrease in pyrope and increase in almandine contents from the mantle to rim of garnet grains. This is coupled with a decrease in the Fe3 + content of epidote and Fe3 +/(Fe2 ++ Fe3 +) ratios from garnet core to rim domains, as well as speciation of calcite, a new mineral phase, in the rock matrix. Minor sulfates occur only as inclusions in garnet core domains, whereas sulfides are confined to the matrix as an accessory mineral phase. Aegirine augite occurs as relics or inclusions in garnet and omphacite. These features clearly suggest that oxidized components, Fe3 + and S6 +, were reduced as Fe2 + and S2 , respectively, at the subduction zone. Thermodynamic modeling in the P–T-log10fO2 space using updated Perplex_X programs further revealed that the Songduo eclogites experienced oxygen fugacity variation of up to 8 log10 units, with decreasing pressure. Petrological observations further suggest that the strong redox processes took place, after breaking of garnet, during the initial exhumation of the eclogites. CO2 and minor sulfur are subsequently transferred from the cold oceanic subduction zone to the overlying mantle wedge, partially released by arc volcanoes to atmosphere. Our study presents a case of C and S recycling between the Earth's exterior and interior.  相似文献   

10.
The Xiadong Alaskan-type complex shares much in common with typical Alaskan-type complexes worldwide, while showing some unique features in terms of mineral compositions. Olivine from the Xiadong dunites is characterized by extremely high Fo component of 91.7–96.7 and anomalously negative correlation of Fo with NiO, while chromite is featured by high 100 × Fe3+/(Fe3+ + Cr + Al) (>70), high 100 × Fe2+/(Fe2+ + Mg) (>70), high 100 × Cr/(Cr + Al) (>90), low MnO (<0.6 wt%) and TiO2 contents (<0.5 wt%). To investigate these particular features, we conducted petrographic observation and mineral composition analyses for the Xiadong dunite. A number of Fe and/or Ni sulfides and alloys occurring as inclusions in olivine and chromite indicate that base metal mineral segregation took place prior to crystallization of olivine and chromite and probably induced Fe and Ni depletions in olivine. The FeO and MgO variations in profile analyses from chromite to adjacent olivine are compatible with Fe-Mg exchange. The diffusion mechanism of Fe from olivine to chromite and Mg from chromite to olivine may have elevated both Fo of olivine and 100 × Fe2+/(Mg + Fe2+) ratio of chromite and further enhanced the decoupling of Fo and NiO in olivine. We thus suggest that base metal mineral segregation and Fe-Mg exchange play important roles in the extreme compositions of the Xiadong dunite. The Ni depletion of olivine and degree of Fe-Mg exchange between olivine and chromite may be used as indicators of mineralization in mafic-ultramafic intrusions.  相似文献   

11.
Physical, physicochemical, and mineralogical-petrographic methods have been applied to samples of ophiolite-hosted chromite ore from different deposits and occurrences in the Urals. Temperature dependences of dielectric loss obtained for nine chromite ore samples consisting of 95–98% Cr spinel show prominent peaks indicating a relaxation origin of the loss. The analyzed samples have the loss peaks at different temperatures depending mainly on H = (FeO/Fe2O3)? : (FeO/Fe2O3)??, where (FeO/Fe2O3)? and (FeO/Fe2O3)?? are, respectively, the ferrous/ferric oxide ratios in the samples before and after heating to 800 °C, and H is thus the heating-induced relative change in the FeO/Fe2O3 ratio. These peak temperatures vary from 550 °C (sample 1, high-Cr chromium spinel with more than 52% Cr2O3) to 750 °C (sample 2, aluminous and magnesian spinel with less than 30% Cr2O3), and H ranges correspondingly from 1.61 to 5.49. The temperature of the loss peaks is related with H as H = 34.30 ? 11.52N + 1.20N2, with an error of σ = 0.19 (N = T · 10?2, T is temperature in °C).  相似文献   

12.
In this paper I present results of IR spectroscopic measurements of water solubility in Al-bearing periclase and ferropericlase (Mg# = 88) synthesized at 25 GPa and 1400–2000 °C. The IR spectra of their crystals show narrow absorption peaks at 3299, 3308, and 3474 cm?1. The calculated H2O contents are 11–25 ppm in periclase (Al2O3 = 0.9–1.2 wt.%) and 14–79 ppm in ferropericlase (Al2O3 = 0.9–2.9 wt.%). Ferropericlase contains more H2O and Al2O3 than periclase at 1800–2000 °C. I suggest that addition of Al2O3 does not influence the solubility of water in ferropericlase but can favor the additional incorporation of Fe2O3 into the structure. The incorporation of Fe3+ into ferropericlase increases water solubility as a result of iron reduction to Fe2+. It is shown that water has limited solubility in ferropericlase from mantle peridotite; therefore, ferropericlase cannot be considered an important hydrogen-bearing mineral in the lower mantle.  相似文献   

13.
《Applied Geochemistry》2006,21(12):2188-2200
Phosphate-induced metal stabilization involving the reactive medium Apatite II™ [Ca10−xNax(PO4)6−x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d’Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L−1), has reduced Zn to near background in this region (about 100 μg L−1), and has reduced SO4 by between 100 and 200 mg L−1 and NO3 to below detection (50 μg L−1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  相似文献   

14.
《Applied Geochemistry》2006,21(8):1288-1300
Phosphate-induced metal stabilization involving the reactive medium Apatite II™ [Ca10−xNax(PO4)6−x(CO3)x(OH)2], where x < 1, was used in a subsurface permeable reactive barrier (PRB) to treat acid mine drainage in a shallow alluvial groundwater containing elevated concentrations of Zn, Pb, Cd, Cu, SO4 and NO3. The groundwater is treated in situ before it enters the East Fork of Ninemile Creek, a tributary to the Coeur d’Alene River, Idaho. Microbially mediated SO4 reduction and the subsequent precipitation of sphalerite [ZnS] is the primary mechanism occurring for immobilization of Zn and Cd. Precipitation of pyromorphite [Pb10(PO4)6(OH,Cl)2] is the most likely mechanism for immobilization of Pb. Precipitation is occurring directly on the original Apatite II. The emplaced PRB has been operating successfully since January of 2001, and has reduced the concentrations of Cd and Pb to below detection (2 μg L−1), has reduced Zn to near background in this region (about 100 μg L−1), and has reduced SO4 by between 100 and 200 mg L−1 and NO3 to below detection (50 μg L−1). The PRB, filled with 90 tonnes of Apatite II, has removed about 4550 kg of Zn, 91 kg of Pb and 45 kg of Cd, but 90% of the immobilization is occurring in the first 20% of the barrier, wherein the reactive media now contain up to 25 wt% Zn. Field observations indicate that about 30% of the Apatite II material is spent (consumed).  相似文献   

15.
In this study, we investigated Fe and Li isotope fractionation between mineral separates of olivine pheno- and xenocrysts (including one clinopyroxyene phenocryst) and their basaltic hosts. Samples were collected from the Canary Islands (Teneriffa, La Palma) and some German volcanic regions (Vogelsberg, Westerwald and Hegau). All investigated bulk samples fall in a tight range of Li and Fe isotope compositions (δ56Fewr = 0.06–0.17‰ and δ7Lima = 2.5–5.2‰, assuming δ7Li of the olivine-free matrix is virtually identical to that of the bulk sample for mass balance reasons). In contrast, olivine phenocrysts display highly variable, but generally light Fe and mostly light Li isotope compositions compared to their respective olivine-free basaltic matrix, which was considered to represent the melt (with δ56Feol = ? 0.24 to 0.14‰ and δ7Liol = ? 10.5 to + 6.5‰, respectively). Single olivine crystals from one sample display even a larger range of δ56Feol between ? 0.7 and + 0.1‰. One single clinopyroxene phenocryst displays the lightest Li isotope composition (δ7Licpx = ? 17.7‰), but no Fe isotope fractionation relative to melt. The olivine phenocrysts show variable Mg# and Ni (correlated in most cases) that range between 0.89 and 0.74 and between 300 and 3000 μg/g, respectively. These olivines likely grew by fractional crystallization in an evolving magma. One sample from the Vogelsberg volcano contained olivine xenocrysts (Mg# > 0.89 and Ni > 3000 μg/g), in addition to olivine phenocrysts. This sample displays the highest Li- and the second highest Fe-isotope fractionation between olivine and melt (Δ7Liol-melt = ? 13; Δ56Feol-melt = ? 0.29).Our data, i.e. the variable olivine- at constant whole rock and matrix isotope compositions, strongly indicate disequilibrium, i.e. kinetic Fe and Li isotope fractionation between olivine and melt (for Li also between cpx and melt) during fractional crystallization. Δ7Liol-melt is correlated with the Li partitioning between olivine and melt (i.e. with Liol/Limelt), indicating Li isotope fractionation due to preferential (faster) diffusion of 6Li into olivine during fractional crystallization. Olivine with low Δ7Liol-melt, also have low Δ56Feol-melt, indicating that Fe isotope fractionation is also driven by diffusion of isotopically light Fe into olivine, potentially, as Fe–Mg inter-diffusion. The lowest Δ56Feol-melt (? 0.40) was observed in a sample from Westerwald (Germany) with abundant magnetite, indicating relatively oxidizing conditions during magma differentiation. This may have enhanced equilibrium Fe isotope fractionation between olivine and melt or fine dispersed magnetite in the basalt matrix may have shifted its Fe isotope composition towards higher δ56Fe. The decoupling of Li- and Fe isotope fractionation in cpx is likely due to faster diffusion of Li relative to Fe in cpx, implying that the large investigated cpx phenocryst resided in the magma for only a short period of time which was sufficient for Li- but not for Fe diffusion. The absence of any equilibrium Fe isotope fractionation between the investigated cpx phenocryst and its basaltic host may be related to the similar Fe3 +/Fe2 + of cpx and melt. In contrast to cpx, the generally light Fe isotope composition of all investigated olivine separates implies the existence of equilibrium- (in addition to diffusion-driven) isotope fractionation between olivine and melt, on the order of 0.1‰.  相似文献   

16.
Numerous magnetite–apatite deposits occur in the Ningwu and Luzong sedimentary basins along the Middle and Lower Yangtze River, China. These deposits are located in the contact zone of (gabbro)-dioritic porphyries with surrounding volcanic or sedimentary rocks and are characterized by massive, vein and disseminated magnetite–apatite ± anhydrite mineralization associated with voluminous sodic–calcic alteration. Petrologic and microthermometric studies on multiphase inclusions in pre- to syn-mineralization pyroxene and garnet from the deposits at Meishan (Ningwu basin), Luohe and Nihe (both in Luzong basin) demonstrate that they represent extremely saline brines (~ 90 wt.% NaClequiv) that were trapped at temperatures of about 780 °C. Laser ablation ICP-MS analyses and Raman spectroscopic studies on the natural fluid inclusions and synthetic fluid inclusions manufactured at similar P–T conditions reveal that the brines are composed mainly of Na (13–24 wt.%), K (7–11 wt.%), Ca (~ 7 wt.%), Fe (~ 2 wt.%), Cl (19–47 wt.%) and variable amounts of SO4 (3–39 wt.%). Their Cl/Br, Na/K and Na/B ratios are markedly different from those of seawater evaporation brines and lie between those of magmatic fluids and sedimentary halite, suggesting a significant contribution from halite-bearing evaporites. High S/B and Ca/Na ratios in the fluid inclusions and heavy sulfur isotopic signatures of syn- to post-mineralization anhydrite (δ34SAnh = + 15.2 to + 16.9‰) and pyrite (δ34SPy = + 4.6‰ to + 12.1‰) further suggest a significant contribution from sedimentary anhydrite. These interpretations are in line with the presence of evaporite sequences in the lower parts of the sedimentary basins.The combined evidence thus suggests that the magnetite–apatite deposits along the Middle and Lower Yangtze River formed by fluids that exsolved from magmas that assimilated substantial amounts of Triassic evaporites during their ascent. Due to their Fe-oxide dominated mineralogy, their association with large-scale sodic–calcic alteration and their spatial and temporal associations with subvolcanic intrusions we interpret them as a special type of IOCG deposits that is characterized by unusually high contents of Na, Ca, Cl and SO4 in the ore-forming fluids. Evaporite assimilation apparently led to the production of large amounts of high-salinity brine and thus to an enhanced capacity to extract iron from the (gabbro)-dioritic intrusions and to concentrate it in the form of ore bodies. Hence, we believe that evaporite-bearing sedimentary basins are more prospective for magnetite–apatite deposits than evaporite-free basins.  相似文献   

17.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

18.
Ag-ores occur in a specific zone of the Bou Azzer Co–As deposit in the Precambrian basement of the Anti-Atlas belt (Morocco), especially in highly microfractured quartz-depleted diorite. They formed after the main Co–As stage of mineralization, but both ore stages (Co–As and Ag-ore) appear linked to similar immiscible fluids: an hyper-saline Na–Ca brine (5.5–22 wt.%. eq. NaCl and 13.5–18.5 wt.% eq. CaCl2, with Na/Ca ranging from 0.4 to 1.2 during Ag-mineralization) occurring as L + V ± halite fluid inclusions and CH4–(N2) gas dominated fluids. Pressure–temperature estimates for the Ag-stage range from 40 to 80 MPa and 150 to 200 °C e.g. at a temperature slightly lower than that of the preceding Co–As stage (200–220 °C).Chlorinity, cation (Na/Ca ca. 2.2) and halogen ratios (Cl/Br from 300 to 360) are typical of deep basinal brines, especially of surface-evaporated brines that have exceeded halite saturation. The primary brines were modified by fluid–rock interaction during burial and migration through the basement. Ag-deposition was probably favoured by dilution and cooling due to the mixing of brines with less saline fluids. Similarities between the Ag-brines from Bou Azzer, Zgounder and Imiter suggest a regional scale circulation of basinal brines during extension probably later than the Triassic, during the early stages of rifting of the Atlantic.  相似文献   

19.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

20.
This is the first detailed account of the copper sulfate posnjakite (Cu4(SO4)(OH)6·H2O) coating cm-long filaments of a microbial consortium of four cyanobacteria and Herminiimonas arsenicoxydans. It was first observed on immersed plant leaves and stalks in a quarry sump of the abandoned Yanqul gold mine in the northern region of Oman; rock surfaces in the immediate vicinity show no immediate evidence of posnjakite. However, a thin unstructured layer without filaments but also containing the brightly coloured turquoise posnjakite covers ferruginous muds in the sump. Although copper is a potent bactericide, the microbes seem to survive even at the extreme heavy metal concentrations that commonly develop in the sump during the dry season (Cu2+  2300 ppm; Zn2+ = 750 ppm; Fe2+  120 ppm; Ni2+ = 37 ppm; Crtotal = 2.5 ppm; Cl = 8250 ppm; and SO42− = 12,250 ppm; pH ∼2.6), thus leading to the precipitation of posnjakite over a large range of physicochemical conditions. Upon exposure to the prevailing arid climate, dehydration and carbonation quickly replace posnjakite with brochantite (Cu4(SO4)(OH)6) and malachite (Cu2(CO3)(OH)2). To characterise and understand the geochemical conditions in which posnjakite precipitates from undersaturated fluids (according to our thermodynamic modelling of the dominant elements), waters from rainy and dry periods were analysed together with various precipitates and compared with the observed field occurrences. The findings imply that posnjakite should not form in the examined environment through purely inorganic mechanisms and its origin must, therefore, be linked to the encountered microbial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号