首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
用1958-2004年NCEP/NCAR再分析资料分析了中国南方春季大尺度大气水汽汇的时空变化特征。结果表明:华南中东部、广西北部-湖南西部-贵州东部地区是中国南方春季水汽汇的两个主要变异中心区。华南中东部春季水汽汇具有明显的年际和年代际变化特征,并以年代际方差占优;广西北部-湖南西部-贵州东部地区春季水汽汇以年际变化为主。华南中东部以及广西北部-湖南西部-贵州东部地区水汽汇的强度异常与东亚上空水汽输送异常导致上述地区垂直积分的水汽通量辐合的异常密切相关,当中国南方上空有西南(东北)风水汽通量距平,即西南风水汽输送增强(减弱)时,则上述地区上空的水汽汇偏强(偏弱)。  相似文献   

2.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

3.
中国西部地区是著名的气候脆弱区,降水的多寡对其影响十分巨大。尤其是在全球变暖的背景下,西部地区的增暖、增湿异常显著,随之而来的西部地区气候变化也越来越受到关注。本研究主要分析了中国西部地区冬季降水的时空变化特征,结果表明:该地区冬季降水的最主要模态具有全区一致变化的特点,并且在20世纪80年代中期出现了一次显著的年代际突变,突变之后中国西部地区冬季降水明显增多。大气环流和水汽输送的分析结果显示,引起西部地区冬季降水年际和年代际变化的因子有着明显的差异。其中西风带水汽输送是影响西部地区冬季降水年代际变化的主要原因;而影响西部地区冬季降水年际变化的水汽则主要来自于阿拉伯海西南向的水汽输送;而且在不同年代际背景下,影响中国西部地区冬季降水的主要水汽输送通道是一致的。这些说明西部降水的预测必须要分不同时间尺度进行研究,短期气候预测需要综合考虑年际变化、年代际变化以及气候长期变化背景才会更为合理和可行。另外,西部降水年际变化因子在不同年代际背景下的稳定性,为建立该地区持续稳定的年际预测模型奠定了科学基础。  相似文献   

4.
利用1960—2010年中国降水资料、NCEP/NCAR再分析资料、NOAA提供的海表温度资料以及太平洋年代际振荡(Pacific Decadal Oscillation,PDO)指数,分析了华南春季降水的年代际变化特征及其与大气环流和海温的关系。结果表明:华南春季降水经历了偏少(1960—1971年)—偏多(1972—1992年)—次偏少(1993—2010年)三个阶段。第一阶段少雨期,500 hPa上西风气流较平直,不利于北方冷空气南下,华南地区的暖气团也不活跃,对应的水汽通量散度为异常辐散。第二阶段多雨期,500 hPa高度上,高原北部脊偏强,利于冷空气南下,与华南地区活跃的暖湿气团汇合,对应的水汽场上为水汽异常辐合。第三阶段少雨期,500 hPa西风气流上的槽脊系统偏强,利于北方强冷空气南下,孟加拉湾地区的南支槽填塞,南方暖湿空气向华南的输送减弱。华南春季降水与PDO指数存在正相关关系,从不同季节来看,在年代际时间尺度上,前期秋季的PDO指数与华南春季降水的正相关显著,PDO处于负位相时,华南春季降水偏少,反之亦然;从华南春季降水年代际变化的不同阶段来看,PDO指数与华南春季降水的正相关在1960—1971年少雨期较显著。  相似文献   

5.
马潇祎  范可 《大气科学》2023,(4):943-956
本文利用观测和再分析资料,分析了1961~2014年中国西北地区(35°N~50°N,75°E~95°E)夏秋季节干湿线性变化趋势特征,定量计算了蒸散量和降水量对干湿变化趋势的贡献,同时分析了其年代际变化特征及其相关的大尺度环流和水汽收支变化。结果表明,西北夏季和秋季干旱变率在四季中最大,是干旱最易发生季节。西北地区在1961~2014年夏秋季显著变湿,其中蒸散和降水在西北地区的线性变湿趋势中占主要作用,降水量的增加和蒸散量的减少对西北变湿都有正贡献,二者趋势总贡献率夏季为93.4%,秋季为67.5%。夏秋季西北干湿变化的年代际转折在1987年前后,自1987年后,夏季西北年代际变湿,主要受到蒸散量和降水量变化影响,地面风速减小所造成的蒸散量降低有利于该地区年代际变湿;西北地区水汽输送通量异常辐合导致其降水量增加。水汽诊断分析进一步表明,夏季降水量的增加主要来自于局地蒸发的增强,贡献率达到约80%,表明局地蒸发是降水的重要水汽源。此外,夏季水汽平流项为正值(即水汽通量辐合加强),有利于降水量增加,该贡献主要由与风速有关的动力学分量引起。而秋季,1987年后西北地区的净辐射通量和地面风速...  相似文献   

6.
基于1961-2020年夏季(6-8月)NCAR/NCEP再分析资料和塔里木河流域(简称“塔河”)38个气象站降水资料,使用5年滑动平均分离出塔河夏季降水年代际和年际变化,选出了典型的年际变化的干年和湿年与年代际变化的干期(1963-1986年)和湿期(1989-2018年),分析了与这两种时间尺度变化相关联的大气环流异常。结果表明,两者的变化不同,影响两者变化的大气环流不同。影响年代际变化的大气环流异常主要表现在欧亚大陆对流层从西北至东南交替出现正负位势高度异常中心,在湿期塔河东部和西部分别出现明显的东风和西南风异常,水汽主要由西北太平洋和印度洋输送至塔河,在干期则与之相反;影响年际变化的大气环流异常主要表现为在塔河东部和西部对流层分别为反气旋异常和气旋异常,在多雨年从南北方向向塔河输送的水汽增多,北风水汽通量异常向流域输送较多,南风水汽通量异常向流域输送较小且主要集中在流域西部,水汽主要由北冰洋洋和印度洋输送至塔河。在干年则与之相反。  相似文献   

7.
中国近40年日平均气温的概率分布特征及年代际差异   总被引:1,自引:0,他引:1  
利用全国129站日平均气温资料,从偏态系数、峰度系数入手分析了日平均气温的概率分布特征及年代际差异,结果表明:近40年中国各季日平均气温的均值分布大致呈南高北低,夏季日平均气温的日际变化最小,四季日平均气温不服从正态分布的地理差异明显。1961~1975年时段至1976~2000年时段,夏季、春季日平均气温不服从正态分布的范围明显加大,冬季不服从正态分布范围,北部加大,南部减小,秋季与冬季大致相反;在夏、春、秋季日平均气温方差的变化对日平均气温概率分布的影响是主要的,均值变化的影响次之,冬季在黄河中下游和长江下游流域均值的变化对概率分布影响是主要的,方差变化影响次之,其他地区相反。  相似文献   

8.
中国东部夏季水汽输送的年代际变化特征   总被引:1,自引:1,他引:0       下载免费PDF全文
基于1948—2012年NCEP/NCAR月平均再分析资料,采用9 a滑动平均、EOF分析及合成分析方法,研究了我国东部夏季水汽输送的年代际变化特征。结果表明:6—8月水汽输送由强转弱发生在1975年前后,水汽输送异常显著区域主要位于东部地区;6月南海到我国东部地区的水汽输送存在年代际变化,7月孟加拉湾、南海和西太平洋(8月印度洋、南海和西太平洋)到我国东部的水汽输送同样存在年代际变化;6—8月年代际变化前后水汽输送矢量分布与相应月份水汽输送通量年代际特征向量场的空间分布基本一致;显著的水汽通量散度辐合区位于华中以西经华北到东北地区,长江以北水汽辐合(辐散)异常显著区域由风场的辐合(辐散)异常和水汽平流异常共同造成,长江以南地区水汽辐合(辐散)异常显著区域主要由风场的辐合(辐散)异常造成。  相似文献   

9.
北太平洋海气界面湍流热通量的年际变化   总被引:3,自引:1,他引:3  
郑建秋  任保华  李根 《大气科学》2009,33(5):1111-1121
本文采用美国伍兹霍尔海洋研究所客观分析海气通量项目提供的1958~2006年月平均的湍流热通量及相关气象场数据, 利用EOF分析、小扰动方法、线性回归、相关分析等方法研究了北太平洋海气界面湍流热通量年际变化的时空特征、 影响因子及其与大气环流的关系。结果表明, 北太平洋湍流热通量的年际变化在冬季最为显著。我国东部海域及其向中东太平洋的延伸部分为冬季潜热通量和感热通量年际变化的关键区。冬季潜热通量的年际变化在副热带太平洋和菲律宾海域主要受风速变化影响, 在北太平洋的高纬和低纬海域尤其是赤道中太平洋主要受比湿差变化影响, 而冬季感热通量的年际变化在整个北太平洋都主要受海气温差变化影响。受大尺度环流影响, 异常低压中心的东 (西) 侧海气比湿差和海气温度差偏小 (偏大), 所以异常低压中心的东 (西) 侧潜热输送和感热输送偏弱 (偏强)。  相似文献   

10.
春夏东亚大气环流年代际转折的影响及其可能机理   总被引:2,自引:0,他引:2  
本文通过多变量联合经验正交分解(MV-EOF)方法揭示了近30年(1979~2010年) 春季和夏季东亚大气环流所发生的年代际转折及其与中国南方降水年代际季节反相变化的内在联系,探讨了局地性大气热源年代际变化影响东亚大气环流年代际转折的可能机理.结果表明:(1)东亚大气环流春季第一模态和夏季第二模态在90年代中期都发生了明显的年代际转折;(2)与春季大气环流第一模态和夏季大气环流第二模态年代际转折相对应的是中国南方降水明显的年代际季节反相变化,即春季降水年代际减少,夏季降水年代际增多;(3)春季青藏高原和夏季贝加尔湖地区大气热源年代际变化对东亚大气环流年代际转折有一定贡献,是造成中国南方降水年代际季节反相变化的直接原因;(4)春季青藏高原大气热源的年代际减弱,使得高原东南侧的西南风减弱,导致中国南方上空水汽输送不足,春季降水减少.夏季贝加尔湖大气热源偶极型分布由“南负北正”转变为“南正北负”,由此在贝湖上空激发高压异常,使得夏季雨带北进受阻而停滞南方,造成中国南方夏季降水增多.  相似文献   

11.
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer.Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.  相似文献   

12.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

13.
利用GODAS逐月混合层深度(mixed layer depth,MLD)资料和中国160站逐月降水资料,分析了北太平洋MLD多年平均气候及异常特征,进一步研究了其对中国夏季降水年际异常的影响.结果表明:1)北太平洋30 ~ 40°N之间混合层最深,冬、春季明显大于夏、秋季.2)日期线附近的北太平洋中部海域是各季MLD年际异常共同最显著区域;仅夏季MLD年际异常与ENSO存在一定关系;秋、冬和春季MLD还存在明显年代际异常特征.3)当前冬北太平洋西部及中部MLD加深时,次年黄河下游部分地区、黄淮、江淮及长江以南大部分地区(广西南部除外)降水将偏少;河套地区、内蒙东部及东北大部降水可能偏多.  相似文献   

14.
1961—2006年云南可利用降水量演变特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用云南122个测站1961—2006年逐月降水量、气温观测资料,依据高桥浩一郎的陆面实际蒸散发经验公式,计算了云南可利用降水量,分析了全球气候变暖背景下云南可利用降水量的变化特征,获得了一些有意义的结果:1)近50年来云南可利用降水量在春季增加,而其余季节减少,特别是夏季可利用降水量明显减少,导致云南年可利用降水量明显减少。2)云南可利用降水量除冬季年代际变化不明显,年际变化明显外,其余季节及年可利用降水量都存在明显的年代际及年际变化。3)从区域趋势变化看,云南大部可利用降水量在冬、春季以增加为主;夏季以减少为主;秋季东部减少,西部增加;全年可利用降水量东部、南部以减少为主,其余地区以增加为主。4)年可利用降水量在全球气候偏暖年以偏少为主,而在偏冷年则以偏多为主。  相似文献   

15.
长江中下游夏季降水异常变化与若干强迫因子的关系   总被引:24,自引:6,他引:18  
魏凤英 《大气科学》2006,30(2):202-211
首先,利用三次样条函数方法对1905~2000年长江中下游夏季降水量和太阳黑子、地球自转速率、赤道东太平洋海温和北极涛动等强迫因子序列进行年代际和年际尺度的分离,并分析了它们年代际尺度的位相变化特征.然后,使用30年滑动相关的方法,分析了长江中下游夏季降水量与上述各因子之间的相关随时间的变化.最后,利用旋转因子分析方法,对年代际及年际尺度因子的潜在结构对长江中下游夏季降水的影响进行了研究.结果表明,长江中下游夏季降水量和强迫因子序列均存在显著的年代际变化特征,它们之间的相关系数随时间变化呈现显著的阶段性,  相似文献   

16.
马音  陈文  冯瑞权 《大气科学》2012,36(2):397-410
基于我国160站59年(1951~2009年)的月降水观测资料、美国气象环境预报中心和国家大气研究中心(NCEP/NCAR)提供的再分析资料和Hadley中心的海表温度(Sea Surface Temperature,简称SST)资料,对我国东部(100°E以东,15°N~40°N)梅雨期(6月和7月)降水的时空变化特...  相似文献   

17.
利用1979—2015年ERA-Interim再分析土壤湿度、云量资料,NCEP/NCAR再分析环流资料和CPC土壤湿度资料,分析了东亚中纬度夏季陆面热力异常的时空分布特征及其与前期春季土壤湿度异常的联系,探讨了前期春季土壤湿度影响东亚中纬度夏季陆面增暖的可能途径。结果表明,东亚中纬度夏季土壤表层温度呈全区一致增暖趋势,其中贝加尔湖及以南地区温度变化最剧烈、增暖最迅速,且1990年代中期前后存在一个明显由冷向暖的年代际转变。进一步分析发现,春、夏季西西伯利亚到贝加尔湖北部地区的土壤湿度与夏季贝加尔湖及以南地区的土壤表层温度在年代际和年际尺度上均存在紧密联系:西西伯利亚到贝加尔湖北部地区土壤湿度异常偏高,通常对应贝加尔湖及南部地区夏季土壤表层温度偏高。西西伯利亚到贝加尔湖北部地区春、夏土壤湿度异常可以引起夏季大气环流异常,从而对东亚夏季中纬度陆面热力异常产生影响:春、夏土壤湿度偏高时,贝加尔湖及其南部地区上空位势高度为正异常,对应为反气旋性异常环流,云量减少,有利于东亚中纬度陆面增暖;反之,则对应为气旋性异常环流,不利于陆面增暖。  相似文献   

18.
我国四季极端雨日数时空变化及其与海表温度异常的关系   总被引:3,自引:0,他引:3  
利用1960—2004年我国586个气象站的逐日降水观测资料,对每个季节和每个站点,以雨日降水量升序排列的第90个百分位值定义极端日降水阈值,分析揭示了我国四季极端雨日数的时空变化特征、与海表温度异常的关系以及相联系的大气环流异常型。结果表明,我国长江流域极端雨日数在冬季和夏季呈显著增加趋势,华北地区极端雨日数在冬季显著增加、而在夏季显著减少,华南地区极端雨日数在春季显著增加,东北地区极端雨日数在冬季和春季显著增加,而西北地区极端雨日数在四季均显著增加。各季极端雨日数在线性趋势变化之上表现年际和年代际变化特征,并且其典型异常型明显不同,春、秋季表现为长江以南与以北地区反位相的"偶极型"变化,夏季表现为长江流域与华南、华北地区反位相的"三极型"变化,冬季表现为全国大部分地区同位相的"单极型"变化。我国季节极端雨日数与印度洋-太平洋海表温度异常的关系主要表现为与ENSO的关系,而ENSO影响我国极端降水异常是通过相应的大气环流异常型来实现的。  相似文献   

19.
Based on the method of rotated principal component (RPC) analysis and wavelet transforms, the win-ter precipitation from 36 stations over China for the period 1881-1993 is examined. The results show thatthe three leading space-time modes correspond, in sequence, to winter rainfall anomalies over the reaches ofthe Yangtze River, the bend of the Yellow River, and the northeastern region of China. The three modes ex-hibit interannual oscillations with quasi-biennial and 8-year periods as well as interdecadal oscillationswith 16- and 32-year periods. The interannual oscillation (< 10 years) occurs in phase over the differentareas, and its maximum amplitude migrates northward considerably with prominent interdecadal variations.However, the interdecadal oscillations (10-32 years) are out of phase over the different regions, and theamplitude variations have the characteristics of stationary waves.The rainfall anomalies appear to be closely re lated to the anti-phase changes of mean sea-level pres-sure (SLP) over the Asian mainland and the North Pacific. When the SLP rises over the North Pacific anddecreases over the Asian mainland, the precipitation over East China increases noticeably. The linkage be-tween the rainfall over China and the SLP anomalies apparently results from the strength of the East Asianwinter monsoon and its associated temperature and moisture advection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号