首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Rhenium–osmium ages were determined for two molybdenite samples and a Pb–Pb age was derived from bornite–chalcopyrite–magnetite at the Salobo iron oxide copper–gold deposit to determine the timing of mineralization and its relation to the nearby Old Salobo Granite. Rhenium–osmium dating of molybdenite spatially associated with copper sulfide minerals yields ages with weighted means of 2576±8 and 2562±8 Ma. Removing the error multiplier introduced by the decay constant uncertainty, appropriate for comparing ages from the same isotopic system, these data convincingly argue for two temporally separated pulses of molybdenite deposition at 2576.1±1.4 Ma (n=2) and 2561.7±3.1 Ma (n=3). The 2576±8 Ma age coincides with a previously published U–Pb age of 2573±2 Ma for the Old Salobo Granite, suggesting that main stage ore formation may have been contemporaneous with granite magmatism. The slightly younger 2562 Ma age most likely represents new molybdenite precipitation associated with the development or reactivation of local shear zones. Lead–lead stepwise leaching of copper sulfide minerals yields a less precise isochron age of 2579±71 Ma, and supports an Archean age for the Salobo ores. This is the first documentation of an Archean iron oxide copper–gold deposit, and the Re–Os and Pb–Pb geochronology herein support 2580–2550 Ma estimates for basement reactivation and regional granite magmatism associated with the development of brittle–ductile shear zones.  相似文献   

2.
The Gilyui Complex includes sedimentary and volcanic rocks metamorphosed to amphibolite and epidote–amphibolite facies, which constitute blocks confined to the main structural sutures of the Dzhugdzhur–Stanovoi superterrane in the Central Asian fold belt. In recent stratigraphic scales, they are considered as being Neoarchean in age with Nd model age values of 1.5–3.0 Ga. The youngest detrital zircons from metamorphosed mudstone of the Gilyui Complex yield a date of 285 ± 4 Ma, which determines the lower age limit for the formation of its protolith. The age of crystallization of rhyolites from the Gilyui Complex is determined to be 231 ± 4 Ma. If the rhyolites form volcanic flow units or sills, the Gilyui Complex is approximately 230 Ma or 231 ± 4 to 285 ± 4 Ma old, respectively.  相似文献   

3.
The U-Pb geochronological study (by the classic technique and on an ion microprobe) of syenites from central Karelia has established their Archean age. The age values obtained for individual massifs are 2735 ± 15 Ma for syenites from the Sjargozero Massif and 2745 ± 10 Ma for syenite from the Khizhjarvi Massif. The syenites are demonstrated to have been emplaced nearly synchronously with sanukitoid massifs in central Karelia, whose average age is 2743 ± 3 Ma (Bibikova et al., 2005). The syenites of the Sjargozero Massif and granodiorites of the Ust-Volomsky Massif were determined to have practically identical ages of 2735 and 2738 Ma, respectively, a fact also corroborating the coeval character of the syenites and granodiorites. Some zircon grains from the Sjargozero syenites contain cores with an age of about 2755 Ma, which suggests that the syenites could have been contaminated with the material of the host volcanic rocks of basaltic and andesitic composition that were metamorphosed at 2750–2760 Ma. The results of the isotopic geochronologic research indicate that the different rock groups composing the Archean postorogenic association of sanukitoids, syenites, and granitoids in central Karelia have been generated in a single stage at approximately 2740 Ma, i.e., 60–70 m.y. after the origin of the syntectonic tonalites. The zircons have elevated Th/U ratios, which is consistent with the mantle genesis of the rocks. Significant crustal contamination was identified in the most acid members of the sanukitoid series: syenites and granitoids. Our data obtained for zircons from the sanukitoids and syenites of the Karelian craton in the Baltic Shield are in good agreement with the results obtained on the sanukitoids of the Canadian Shield.  相似文献   

4.
北秦岭高压-超高压岩石的多期变质时代及其地质意义   总被引:14,自引:12,他引:2  
在岩相学观察和锆石CL图像研究的基础上,利用LA-ICP-MS原位微区定年分析方法,本文确定北秦岭清油河退变榴辉岩的峰期变质时代为490±6Ma,退变质时代为453±9Ma,原岩形成时代为655±9Ma;松树沟超高压长英质片麻岩的峰期变质时代为497±8Ma,两期退变质时代分别为448±4Ma和421±2Ma,原岩形成时代上限832±25Ma;寨根石榴石辉石岩的峰期变质时代为498±2Ma,中压麻粒岩相退变质时代为450±3Ma,角闪岩相退变质时代为426±1Ma,原岩形成时代为573±40Ma;西峡北榴闪岩的角闪岩相变质时代为423±3Ma,原岩形成时代为843±7Ma。新确定的这些岩石的峰期变质时代与前人已报导的区内高压-超高压岩石的峰期变质时代在误差范围内基本一致,结合区内高压-超高压岩石不仅分布在秦岭岩群北缘的官坡-双槐树一带,而且断续出露在秦岭岩群中部或偏南侧的清油河北-松树沟-寨根北甚至西峡北东西一线,进一步表明它们应是同一期构造地质事件的产物。北秦岭已发现的全部正变质的高压-超高压岩石均呈透镜体状分布在围岩片麻岩中,松树沟超高压长英质片麻岩的原岩为典型的陆壳沉积物,因此,这些高压-超高压岩石的形成可能都是陆壳俯冲-深俯冲作用的产物。结合岩相学观察、锆石CL图像和锆石U-Pb定年表明,这些高压-超高压岩石在~500Ma经历了峰期变质作用后,又分别在~450Ma和~420Ma遭受了中压麻粒岩相和或角闪岩相退变质作用的叠加,充分说明这些高压-超高压岩石经历了一个完整的由陆壳俯冲-深俯冲、之后连续两次抬升的构造演化过程。另外,本次研究新获得的这些岩石的原岩形成时代介于843±7Ma~573±40Ma之间,结合官坡榴辉岩的原岩形成时代为791~814Ma以及松树沟榴闪岩原岩时代为787±16Ma的研究,共同表明北秦岭高压-超高压岩石的原岩形成时代均为新元古代,因此,限定俯冲-深俯冲的陆壳物质应来自形成时代为新元古代的大陆地壳或地质体。结合区域地质背景和前人研究成果综合分析,本文初步认为,北秦岭高压-超高压变质岩带的形成是商丹洋向北俯冲拖曳南秦岭新元古代陆壳物质在~500Ma发生陆壳俯冲-深俯冲作用的产物,之后在~450Ma与~420Ma经历了两期抬升。  相似文献   

5.
The paper reports newly obtained data on the geochronology of the Dovyren intrusive complex and associated metarhyolites of the Inyaptuk Formation in the Synnyr Range. The data were obtained by local LA-ICPMS analysis of zircons in samples. The U-Pb age of olivine-free gabbronorite from near the roof of the Yoko-Dovyren Massif is 730 ± 6 Ma (MSWD = 1.7, n = 33, three samples) is close to the estimated age of 731 ± 4 Ma (MSWD = 1.3, n = 56, five samples) of a 200-m-thick sill beneath the pluton. These data overlap the age of recrystallized hornfels found within the massif (“charnockitoid”, 723 ± 7 Ma, MSWD = 0.12, n = 10) and a dike of sulfidated gabbronorite below the bottom of the massif (725 ± 8 Ma, MSWD = 2.0, n = 15). The estimates are also consistent with the age of albite hornfels (721 ± 6 Ma, MSWD = 0.78, n = 12), which was produced in a low-temperature contact metamorphic facies of the host rocks. The average age of the Dovyren Complex is 728.4 ± 3.4 Ma (MSWD = 1.8, n = 99) based on data on the sill, near-roof gabbronorite, and “charnockitoid”) and is roughly 55 Ma older than the estimate of 673 ± 22 Ma (Sm-Nd; [13]). The U-Pb system of zircon in two quartz metaporphyre samples from the bottom portion of the Inyaptuk volcanic formation in the northeastern part of the Yoko-Dovyren Massif turns out to be disturbed. The scatter of the data points can be explained by the effect of two discrete events. The age of the first zircon population is then 729 ± 14 Ma (MSWD = 0.74, n = 8), and that of the second population is 667 ± 14 Ma (MSWD = 1.9, n = 13). The older value pertains to intrusive rocks of Dovyren, and the age of the “rejuvenated” zircon grains corresponds to the hydrothermal-metasomatic processes, which affected the whole volcano-plutonic sequence and involved the serpentinization of the hyperbasites. This is validated by the results of Rb-Sr isotopic studies with the partial acid leaching of two serpentinized peridotite samples from the Verblyud Sill. These studies date the overprinted processes at 659 ± 5 Ma (MSWD = 1.3, n = 3).  相似文献   

6.
The Zapolyarnyi volcanic center is confined to the boundary between the oldest volcanic formations (I and II) of the Pechenga complex. Its structure and rock association are significantly different from those of numerous eruptive centers of areal basaltic volcanism in the Pechenga structure. It is an oval-shaped body, 700 × 300 m in size, composed of volcanic eruptive lava breccia. The clastic material of the breccia includes angular and partially molten fragments of granites, pegmatoid granites, epidosites, quartz, and feldspars embedded in basaltic lava. The basalts are titanium-rich and iron-rich varieties enriched in large-ion lithophile elements (Rb, Ba, and Sr); they are similar in composition, including Rb-Sr and Sm-Nd isotopic characteristics, to the ferropicrites of the youngest volcanic formation (IV) and their differentiation products. The basalts of the volcanic center show εNd(T) values from ?3.13 to ?1.17. In general, these rocks definitely represent the vent facies of an Early Proterozoic central-type volcano. The age of the basalt of the volcanic center is 1918 ± 3 Ma (U-Pb method on zircon) and is similar to the previously determined age of volcanics of volcanic formation IV (1990 ± 40 Ma, Sm-Nd method). The rocks of this formation participated 2000–1900 Ma ago in the formation of the volcanoplutonic ore-bearing ferropicrite-gabbro-wehrlite association of the Pechenga structure. The age of the ore-bearing Pilguyarvi gabbro-wehrlite intrusion was constrained between 1987 ± 5 Ma (U-Pb method on zircon) and 1980 ± 10 Ma (U-Pb method on baddeleyite). In addition, the first data were obtained for the age of comagmatic olivine norites of the Nyasyucka dike complex in the northeastern flank of the Pechenga structure (1941 ± 3 Ma, U-Pb method on baddeleyite) and the peridotites of the Allarechka ore field in the southern framing of the Pechenga structure (1918 ± 29 Ma, U-Pb method on zircon), which were previously considered Archean. Taking into account the geological and geochemical characteristics of the rocks of the Zapolyarnyi paleovolcano and the identical age of the Ludikovian intrusions, it can be concluded that the basalts of the paleovolcano were formed during late stages of the evolution of Early Proterozoic basic-ultrabasic magmatism, which was characterized by extensive explosive activity and strong magmatic differentiation responsible for the generation of the ore-bearing intrusions of the ferropicrite-gabbro-wehrlite association.  相似文献   

7.
杨红  刘福来  刘平华  王舫 《岩石学报》2013,29(6):2161-2170
大红山群是扬子地块西南缘出露的古元古代结晶基底,主要经历了绿片岩相-低角闪岩相变质作用.本研究对大红山群老厂河组变质中酸性岩和变质沉积岩——石榴白云母-长石石英片岩中的白云母进行了40Ar-39Ar测年,得到三个样品的坪年龄和40Ar/39Ar等时线年龄结果较统一,坪年龄代表的变质年龄分别为837.7±4.2Ma、839.6±4.2Ma和844.2±4.2Ma.变质沉积岩和变质中酸性岩的变质时代类似,均介于837~845Ma.大红山群变质基性岩中变质锆石的U-Pb定年年龄为849±12Ma(杨红等,2012),40Ar-39Ar测年数据与锆石定年数据相结合,说明大红山群古元古代结晶基底中的火山岩和沉积岩均在新元古代经历了同期变质作用,其主期低角闪岩相变质作用发生于新元古代837~850Ma.结合前人发表的扬子西缘~750Ma的变质年龄,扬子西缘从北向南的区域变质作用时限可扩展到750 ~850Ma.此外,扬子西缘存在750~850Ma的岩浆事件,本文研究结果说明,扬子地块西缘在新元古代不仅发生了大规模岩浆作用,也发生了750~850Ma的区域变质作用,扬子西缘存在新元古代的岩浆-变质事件.岩浆事件与变质事件之间可能存在相关性,即新元古代岩浆作用引起了扬子西缘的区域动力热流变质作用.  相似文献   

8.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

9.
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating,including basalt and andesite from Borehole SCSV1 and volcanic agglomerate from Borehole SCSV2,respectively.A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene,in which the pre-Paleocene data dominate.The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin.Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones,and have REE features of crustal zircon.Zircon U-Pb dates of 2518–2481 Ma,1933– 1724 Ma,and 1094–1040 Ma from the SCSV1 volcanics,and 2810–2718 Ma,2458–2421 Ma,and 1850 –993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea,well comparable with age records dated from the Cathaysia block.The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia,respectively.The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2.The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events.Their age signatures from the SCSV1 cover 266.5±3.5 Ma,241.1±6.0 Ma,184.0±4.2 Ma,160.9±4.2 Ma and 102.8±2.6 Ma,and from the SCSV2 are 244±15 Ma,158.1±3.5 Ma,141±13 Ma and 96.3±2.1 Ma.Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement,Caledonian orogeny,and Indosinian orogeny to Yanshannian magmatism.This process can be well comparable with the tectonic evolution of South China,largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.  相似文献   

10.
吐哈盆地砂岩型铀矿U-Pb同位素地质特征   总被引:4,自引:1,他引:3  
吐哈盆地十红滩砂岩型铀矿主要成矿年龄为48±2Ma、28±4Ma。盆地西南部蚀源区觉罗塔格山片麻状花岗岩的形成年龄为422±5Ma、斑状花岗岩的形成年龄为268±23Ma。赋矿地层西山窑组(J2x)砂体碎屑锆石U Pb等时线年龄为283±67Ma ,证实花岗岩侵入体是含矿砂体的主要物质来源。含矿层位的富铀沉积砂体及蚀源区富铀的岩体、石炭系碎屑岩以及火山碎屑岩等 ,构成铀成矿铀源。  相似文献   

11.
The U-Pb (SHRIMP-II) age of zircons from garnet-spinel peridotite nodules in Cenozoic alkali basalts of the Vitim Plateau, Transbaikal region were determined. Most of the zircons are euhedral and subhedral prismatic crystals with an elongation of 1.5–2.0. Fragments of crystals and nearly equant crystals with rounded edges are present as well. Rounded or irregular cores are observed in some grains. None of the zircons yielded an age that would correspond to the time of basalt eruption (21–2.35 Ma or younger). The youngest dates range from 135.2 ± 2.7 Ma to 141 ± 3 Ma (Early Cretaceous). Both concordant values and the lower intersection of discordia with concordia (138.8 ± 5.7 Ma) are within this age interval. The upper intersection corresponds to 1891 ± 26 Ma. A considerable part of the concordant values are grouped within the intervals (164.6 ± 1.6)–(183.4 ± 2.0) and (264.0 ± 7.3)–(295.7 ± 0.76) Ma (Early-Middle Jurassic and Early Permian, respectively). The older concordant values fall in the interval 1462 ± 19 to 1506 ± 4 Ma (Mesoproterozoic). Proterozoic age was obtained for cores of composite zircon grains. Zircons pertaining to all age intervals are enriched in REE relative to chondrite (except La). The chondrite-normalized REE patterns are positively sloped with an increase in contents from LREE to HREE. The LREE and HREE contents and the depth of the Eu minimum tend to increase with age. In composite zircons of Proterozoic age, cores are somewhat enriched in REE. It has been suggested that crystallization of zircon as a separate phase in peridotites extremely depleted in Zr was related to a low degree of partial melting. The melt that formed in the intergranular space and that was repeatedly enriched in Zr was not extracted from the solid framework of rock and crystallized in situ under the changed thermodynamic conditions in the upper mantle. The occurrence of zircons of several age intervals in peridotites testifies to the multistage evolution of the upper mantle and recurrent partial melting under various physicochemical conditions.  相似文献   

12.
The palaeontological site of Venta Micena (Orce, Andalusia, Spain) lies in the eastern sector of the Guadix–Baza basin, one of the best documented areas in Europe for Plio‐Pleistocene biostratigraphy. The combination of biochronological and palaeomagnetic results, combined with the radiometric data obtained for Atapuerca Sima del Elefante, indicated that the Venta Micena stratum was formed between the Jaramillo and Olduvai palaeomagnetic events, most likely between 1.22 and 1.77 Ma. Five fossil teeth from two outcrops (sites A and B) were selected to assess the potential of combined uranium series–electron spin resonance (US‐ESR) dating of Early Pleistocene sites. Although the US‐ESR results of the first outcrop showed a large scatter between the three teeth, the mean age of 1.37 ± 0.24 Ma can be considered a reasonable age estimate for Venta Micena. The mean ESR age of 0.62 ± 0.03 Ma obtained for site B seems to be a severe underestimation when compared with the independent age control. This underestimation is attributed to a relative recent U‐mobilization event that led to some U‐leaching. The results show that any ESR age calculations of old samples are extremely sensitive to variations in the measured 230Th/234U ratios in dental tissues. Although the results demonstrate that ESR can in principle be applied to Early Pleistocene sites, they also reveal the complexity of dating such old teeth. It is necessary to continue research in several directions, such as study of the behaviour of ESR signals in old teeth and understanding recent U‐mobilization processes, to improve the reliability of the combined US‐ESR dating method applied to Early Pleistocene times, a period for which the number of available numerical dating techniques is very limited. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄   总被引:9,自引:0,他引:9  
沙坪沟斑岩钼矿是大别成矿带近年发现的超大型矿床。在对矿化特征分析的基础上,对其进行了成岩成矿年代学研究。采用LA-ICP-MS锆石U-Pb测年技术,得到含矿岩体的成岩年龄。细粒石英正长岩与中粒石英正长岩分别形成于122.51±0.81Ma和121.5±1.3Ma,正长斑岩形成于120.7±1.1Ma。通过矿床辉钼矿Re-Os同位素分析,获得其模式年龄为100±1.8~113.6±1.7Ma。成岩与成矿时差约7Ma,指示含矿热液活动时限较长。长时间的热液活动可能是形成沙坪沟超大型斑岩钼矿床的重要因素。沙坪沟钼成矿时间与大别带钼矿化时间(133~110Ma)高度一致,与东秦岭晚期钼矿化时间相同。大别带钼矿是秦岭-大别成矿带的组成部分,形成于相同构造背景下,是区域构造岩浆作用的产物。  相似文献   

14.
羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年   总被引:7,自引:0,他引:7  
地球化学资料表明,羌塘盆地胜利河海相油页岩有机碳含量为15.05%~20.34%,平均为17.695%,灰分含量为55.23%,焦油含量为11.0%;干酪根类型为Ⅱ1或Ⅱ2型。利用Re-Os同位素对该油页岩层进行定年,得到的等时线年龄为101±24Ma。该等时线年龄比生物地层所获得的地层年龄年轻。  相似文献   

15.
北秦岭造山带的早古生代多期变质作用   总被引:15,自引:13,他引:2  
张建新  于胜尧  孟繁聪 《岩石学报》2011,27(4):1179-1190
北秦岭造山带的秦岭岩群以高级变质岩石为特征,主要包括少量榴辉岩、高压麻粒岩和区域上广泛分布的麻粒岩-角闪岩相变质岩石。年代学研究显示秦岭岩群中不同岩石记录了多期变质作用。已有的定年资料给出北秦岭官坡地区的榴辉岩的年龄为500Ma左右,代表榴辉岩相的变质时代。结合岩相学资料,对两个高压麻粒岩样品的SHRIMP和LA-ICPMS U-Pb测定分别获得504±7Ma 和506±3Ma的年龄,应代表高压麻粒岩相变质时代。这表明高压麻粒岩和相邻的榴辉岩有相近的变质时代,但形成在造山带中不同的构热造环境中。西峡地区的角闪二辉麻粒岩的U-Pb定年给出两组早古生代年龄,一组为440±2Ma,可能代表了中低压麻粒岩相的变质时代,另一组为426±1Ma,应代表区域角闪岩相的变质时代。桐柏山北部的石榴二辉麻粒岩的U-Pb定年数据给出436±1Ma的年龄,为中压麻粒岩相的变质时代。这些资料表明北秦岭造山带经历了早奥陶世的俯冲和地壳增厚作用,并在晚志留世遭受了广泛的巴罗式区域变质作用。  相似文献   

16.
The Dapingliang Cu deposit is located at the eastern part of the Kuruketage block in NW China. Igneous rocks are widely distributed in the district and skarn are formed at the contact zone between igneous rocks and the carbonates of Beiyixi Formation. The ore is distributed in the skarn. Zircon U-Pb isotopic ages of the plagiogranite, which is related to the Cu deposit, indicate that the lower and upper intercept ages are 826 ± 23 Ma and 1886 ± 61 Ma, respectively. The lower intercept age corresponds to a weighted mean 206Pb/238U age of 826 ± 13 Ma, yielded by ten analysis points. The upper intercept age may represent the age of the source rock, from which the plagiogranite originated. Re-Os isotopic analysis of six molybdenite samples from L7 orebody in the Dapingliang deposit shows an isochron age of 830 ± 26 Ma, which corresponds to the weighted mean model age of 829.4 ± 9.5 Ma. The concordant ages obtained by zircon U-Pb dating and molybdenite Re-Os dating are compatible with the skarn-type mineralization at Dapingling and confirm that the deposit formed during the Tarim orogeny.  相似文献   

17.
The Yuchiling Mo deposit is a recently discovered giant porphyry system in the East Qinling Mo belt, China. Its apparent causative intrusion, i.e., the Yuchiling granite porphyry, is the youngest intrusion (phase 4) of the Heyu multiphase granite batholith, which was emplaced between 143 and 135 Ma. New robust constraints on the formation of the Yuchiling porphyry Mo system are provided by combined zircon U–Pb, biotite 40Ar/39Ar, and molybdenite Re–Os dating. Zircon grains from the Mo-mineralized granite porphyry yield weighted 206Pb/238U age of 134.0?±?1.4 Ma (n?=?19, 2σ error, MSWD?=?0.30). Magmatic biotite from the same sample yield a 40Ar/39Ar plateau age of 135.1?±?1.4 Ma (2σ error), and an inverse isochron age of 135.6?±?2.0 Ma (n?=?7, 2σ error, MSWD?=?10.8), which are effectively coincident with the zircon U–Pb age within analytical error. Three pulses of mineralization can be deduced from the molybdenite Re–Os ages, namely: ~141, ~137, and ~134 Ma, which agree well with the zircon U–Pb ages of granitic phases 1, 2, and the Yuchiling porphyry (phase 4), respectively. These well-constrained temporal correlations indicate that Mo mineralization was caused by pulses of granitic magmatism, and that the ore-forming magmatic-hydrothermal activity responsible for the Yuchiling porphyry Mo system lasted about 8 Ma. The Yuchiling Mo deposit represents a unique style of porphyry Mo system formed in a post-collision setting, and associated with F-rich, high-K calc-alkaline intrusions, which differ from convergent margin-associated porphyry Mo deposits.  相似文献   

18.
鱼洞子杂岩是秦岭地区最古老的复杂的地质体。前人对鱼洞子杂岩不同的地质体采用多种方法进行了年龄测定,但结果差异较大,且总体测试精度不高。依据锆石CL影像的特征,结合锆石成因分析和锆石微区的U-Pb同位素,进行了LA-ICP-MS测定,在鱼洞子杂岩糜棱岩化细粒黑云母花岗岩和强片理化黑云母花岗岩中分别获得2661Ma±17Ma和2703Ma±26Ma的岩浆结晶年龄,同时在糜棱岩化细粒黑云母花岗岩中获得2647Ma±65Ma的变质锆石年龄。其中2703Ma±26Ma是秦岭造山带目前发现的最古老的侵入岩的形成年龄,为研究秦岭造山带早前寒武纪构造岩浆事件和地球早期的形成演化提供了新的资料。  相似文献   

19.
冀东下营坊金矿成矿年代学研究   总被引:3,自引:0,他引:3  
邹滔 《地质与勘探》2016,52(1):84-97
冀东下营坊金矿地处华北地台北缘燕山造山带东段,是该区一个重要的岩浆期后热液型金矿。该金矿产于大铜山杂岩体及外接触带中,有三种矿化类型,即斑岩型、角砾岩型、矽卡岩型,构成了典型的斑岩型金矿成矿系统。为精确厘定下营坊金矿的成矿年代,更好的理解该矿与区内其他金矿的关系,本文采用锆石U-Pb和辉钼矿Re-Os同位素定年,获得赋矿斑岩(花岗斑岩)的结晶年龄为163.32±0.90Ma,切穿矿体的煌斑岩脉结晶年龄为159.0±1.5Ma,由此限定成矿年龄可能在163.32Ma~159.0Ma之间;而由辉钼矿获得的Re-Os同位素模式年龄为164.2±2.3Ma。在误差范围内,Re-Os同位素模式年龄与U-Pb同位素年龄是一致的,表明下营坊金矿成矿年龄为164.2±2.3Ma,属于中侏罗世岩浆热液事件。结合前人研究结果,认为下营坊金矿以及冀东中侏罗世金矿的成岩成矿构造背景与区内该时期的岩浆事件一样,可能受古太平洋板块俯冲的影响而处于挤压的构造环境。  相似文献   

20.
The Athesian Volcanic District (AVD), a thick sequence of andesitic to rhyolitic lava and ignimbrite, overlies both the Variscan basement of the Dolomites and, where present, the continental basal conglomerate of Upper Carboniferous(?) to Early Permian age. This volcanic activity is known to mark the margin of the intra-Pangea megashear system between Gondwana and Laurasia, the onset age of which is determined in this study.SHRIMP U-Pb dating on zircon from Ponte Gardena/Waidbruck (Isarco/Eisack valley) basaltic andesite yields an age of 290.7 ± 3 Ma, providing the oldest record of andesite volcanic activity yet documented in the AVD. Two younger dates (279.9 ± 3.3 and 278.6 ± 3.1 Ma) obtained for the andesitic necks of M. dei Ginepri (Eores/Aferer valley) and Col Quaternà (western Comelico), respectively, probably represent a second pulse of andesite magmatic activity.Near Chiusa/Klausen, the volcanoclastic deposits at the bottom of the Funes/Villnöss valley volcano-sedimentary complex only contain detrital zircons, dated at 469 ± 6 Ma; these probably derive from erosion of Paleozoic porphyroids. Other zircons from the same sediments and inherited cores of magmatic andesite crystals give Paleoproterozoic (1953.6 ± 22.1, 1834.6 ± 69.3, 1773.6 ± 25.1 Ma), Early Neoproterozoic (1015 ± 14 Ma) and Late Neoproterozoic (728.4 ± 9.6, 687.6 ± 7.6 Ma) ages. These ancient detrital and inherited zircon ages fit the model that envisages the Dolomite region as being tectonically coherent with Africa, at least until the Lower Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号