首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Juiz de Fora Complex is mainly composed of granulites, and granodioritic-migmatite gneisses and is a cratonic basement of the Ribeira belt. Paleomagnetic analysis on samples from 64 sites widely distributed along the Além Paraíba dextral shear zone (SE Brazil, Rio de Janeiro State) yielded a northeastern, steep downward inclination direction (Dm=40.4°, Im=75.4, a95=6.0°, K=20.1) for 30 sites. The corresponding paleomagnetic pole (RB) is situated at 335.2°E; 0.6°S (a95=10.0°; K=7.9). Rock magnetism indicates that both (titano)magnetite and titanohematite are the main magnetic minerals responsible for this direction. Anisotropy of low-field magnetic susceptibility (AMS) measurements were used to correct the ChRM directions and consequently its corresponding paleomagnetic pole. This correction yielded a new mean ChRM (Dm = 2.9°, Im = 75.4°, a95 = 6.4°, K = 17.9) whose paleomagnetic pole RBc is located at 320.1°E, 4.2° N (a95=10.3°, K=7.5). Both mean ChRM and paleomagnetic pole obtained from uncorrected and corrected data are statistically different at the 95% confidence circle. Geological and geochronological data suggest that the age of the Juiz de Fora Complex pole is probably between 535–500 Ma, and paleomagnetic results permit further constraint on these ages to the interval 520–500 Ma by comparison with high quality paleomagnetic poles in the 560–500 Ma Gondwana APW path.  相似文献   

2.
This paper presents new paleomagnetic results on Cenozoic rocks from northern central Asia. Eighteen sites were sampled in Pliocene to Miocene clays and sandy clays of the Zaisan basin (southeastern Kazakhstan) and 12 sites in the upper Oligocene to Pleistocene clays and sandstones of the Chuya depression (Siberian Altai).Thermal demagnetization of isothermal remanent magnetization (IRM) showed that hematite and magnetite are the main ferromagnetic minerals in the deposits of the Zaisan basin. Stepwise thermal demagnetization up to 640–660 °C isolated a characteristic (ChRM) component of either normal or reverse polarity at nine sites. At two other sites, the great circles convergence method yielded a definite direction. Measurements of the anisotropy of magnetic susceptibility showed that the hematite-bearing sediments preserved their depositional fabric. These results suggest a primary origin of the ChRM and were substantiated by positive fold and reversal tests. The mean paleomagnetic direction for the Zaisan basin (D=9°, I=59°, k=19, α95=11°) is close to the expected direction derived from the APW path of Eurasia [J. Geophys. Res. 96 (1991) 4029] and shows that the basin did not rotated relative to stable Asia during the Tertiary.In the upper Pliocene–Pleistocene sandstones of the Chuya depression, a very stable ChRM carried by hematite was found. Its mean direction (D=9°, I=46°, k=25, α95=7°) is characterized by declination close to the one excepted for early Quaternary, whereas inclination is lower. In the middle Miocene to lower Pliocene clays and sandstones, a stable ChRM of both normal and reverse polarities carried by magnetite was isolated. Its mean direction (D=332°, I=63°, k=31, α95=4°) is deviated with respect to the reference direction and implies a Neogene, 39±8° counterclockwise rotation of the Chuya depression relative to stable Asia. These results and those from the literature suggest that the different amount of rotation found in the two basins is related to a sharp variation in their tectonic style, predominantly compressive in the Zaisan basin and transpressive in the Siberian Altai. At a larger scale, the pattern of vertical axis rotations deduced from paleomagnetic data in northern central Asia is consistent with the hypothesis of a large left-lateral shear zone running from the Pamirs to the Baikal. Heterogeneous rotations, however, indicate changes in style of faulting along the shear zone and local effect for the domains with the largest rotations.  相似文献   

3.
Eighty-two palaeomagnetic samples of calcareous and jaspilitic grainstones (iron-formation or ‘taconite’) and chert carbonate were collected from the 1.88-Ga Gunflint Formation at 22 sites in the Thunder Bay area, Ontario. Twenty clasts of Gunflint taconite also were sampled from the basal conglomerate of the overlying Mesoproterozoic Sibley Group. Anisotropy of magnetic susceptibility measurements indicate the Gunflint Formation in the sampling area has not experienced regional dynamic metamorphism. Analyses by variable-field translation balance and X-ray diffraction show that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in some samples. Altogether, 213 Gunflint specimens and 59 Sibley conglomerate specimens were subjected to stepwise thermal demagnetisation and 74 Gunflint specimens to stepwise alternating-frequency demagnetisation. The following components were isolated for the taconites:
• Gunflint magnetite: normal declination D=293.4°, inclination I=30.8°, α95=7.2°, n=21; reverse D=86.7°, I=–54.6°, α95=5.8°, n=29.
• Gunflint hematite: normal D=243.6°, I=23.6°, α95=6.0°, n=11; reverse D=70.3°, I=–51.4°, α95=3.2°, n=79.
• Sibley clasts magnetite: normal D=282.7°, I=33.4°, α95=7.6°, n=20.
• Sibley clasts hematite: normal D=254.5°, I=56.2°, α95=8.4°, n=13; reverse D=110.6°, I=–55.7°, α95=8.3°, n=11.
None of these sets passed the reversal test, with the normal component generally being the shallower. Fold tests were negative or inconclusive and the conglomerate test also was negative. Chert carbonate at one other site appears to have acquired a remanence carried by magnetite (D=97.3°, I=−78.2°, α95=6.3°, n=18) prior to folding related to Keweenawan (1.1 Ga) Logan diabase sill emplacement. Most of the components we identified match components for Keweenawan sills, volcanic rocks, intrusions and baked contact rocks in the Thunder Bay area, indicating that Keweenawan magmatism caused widespread chemical remagnetisation of the Proterozoic country rock in our sampling area. Although others have argued that asymmetry was a feature of the Keweenawan geomagnetic field, the declinations of our Gunflint and Sibley hematite and magnetite components are different, suggesting that the components were acquired at significantly different times. We conclude that the reversal asymmetry shown by our Gunflint and Sibley data may best be ascribed to apparent polar wander during Keweenawan times.  相似文献   

4.
A total of 400 samples (33 sites) were collected from the earliest Cretaceous to early Late Cretaceous sandstones of the Khorat Group in the Indochina block for paleomagnetic study to unravel the tectonic evolution of the region. The sites were adopted from 3 traverses located in the northern edge of the Khorat Plateau, northeastern Thailand. Results indicate that almost all the sandstones exhibit similar magnetic values with an average declination (D) = 31.7°, inclination (I) = 30.3°, λ = 59.7°,  = 190.9°, K = 54.4, and A95 = 3.7 at reference point 17°30′N and 103°30′E. The calculated paleolatitude points are inferred to deviate from the present latitude point by 1.2 ± 2.3°. Only the lowermost part of the Cretaceous sandstones can pass a positive fold test at 95% confidence level. The relationship between the virtual geomagnetic poles (VGPs) of Cretaceous rocks of the Indochina plate in Thailand and those of the South China plate advocate that there is a major displacement of Indochina along the northwest-trending Red River and associated faults by about 950 ± 150 km with a 16.0–17.0° clockwise rotation relative to the South China plate during earliest Cretaceous times. Paleomagnetic results of the early Late Cretaceous Indochina plate point to a 20–25° clockwise rotation relative to the present occurring since very Late Cretaceous (65 Myrs)–Early Neogene times which may be due to the collision between India and Asia.  相似文献   

5.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma).  相似文献   

6.
Paleomagnetic samples of Paleocene–Eocene red sandstones were collected at 36 sites from the Jiangdihe-4 and Zhaojiadian formations around the Yongren (26.1°N, 101.7°E) and Dayao areas (25.7°N, 101.3°E). These areas are located in the Chuxiong basin of the Chuan Dian Fragment, southwestern part of the Yangtze block. After stepwise thermal demagnetization, a high-temperature component with unblocking temperature of about 680 °C is isolated from 26 sites. The primary nature of this magnetization is ascertained through positive fold and reversal tests at 95% confidence level. The tilt-corrected mean paleomagnetic directions for the Yongren and Dayao areas are D=17.2°, I=26.6° with α95=5.8° and D=16.5°, I=31.1° with α95=4.8, respectively. Easterly deflected declinations from this study are consistent with those reported from other areas of the Chuxiong basin, indicating its wide presence in the Cretaceous–Eocene formations of the said basin. Comparison with declination values expected from the Cretaceous–Eocene APWP of Eurasia indicates that the magnitude of clockwise rotation systematically increases toward the southeast within the Chuxiong basin as well as in the Chuan Dian Fragment. This trend of the differential tectonic rotation in the Chuan Dian Fragment is consistent with curvature of the Xianshuihe–Xiojiang fault system. Deformation of the Chuxiong basin can fairly be associated with the formation of eastward bulge in the southern part of the Chuan Dian fragment. During southward displacement, the Chuan Dian Fragment was probably subjected to tectonic stresses as a result interaction with the Yangtze and Indochina blocks, which resulted into east–west extension and north–south shortening.  相似文献   

7.
The platform limestones of Apulia (Italy) outcropping in the Gargano peninsula have been restudied. Paleomagnetic research has been carried out on Upper Cretaceous, Lower Cretaceous and Jurassic rocks. Despite the low intensities of the NRM (10–100 μA/m), all samples (268) could be cleaned by stepwise A.F. and/or thermal demagnetization treatments. NRM directions could be determined accurately and reproducibly for 85% of the samples, using a ScT cryogenic magnetometer and double precision measuring procedures. NRM of the Jurassic limestone is carried by secondary haematite and the results are therefore rejected from further consideration. The Upper and Lower Cretaceous limestones have an NRM carried by magnetite. Minor bedding tilt corrections improve the grouping of the site-mean results. The Upper Cretaceous “Scaglia” limestone (Turonian-Senonian) reveals a characteristic mean direction of decl. = 327.7°, incl. = 38.2°, α95 = 4.3° (21 sites), while the Lower Cretaceous “Maiolica” limestone (Neocomian-Aptian/Albian) reveals a characteristic mean direction of decl. = 303.1°, incl. = 35.1°, α95 = 8.7° (8 sites). The Cretaceous results show a post-Aptian/Albian counterclockwise rotation of about 25°, which is expressed by the smeared distribution of the Late Cretaceous site-mean results and a post-Senonian (i.e. Tertiary) counterclockwise rotation of the same amount with respect to the pole. These results are in excellent agreement with contemporaneous paleomagnetic results from other peri-Adriatic regions. A Tertiary counterclockwise rotation of all the stable Adriatic block is strongly supported by the new results.  相似文献   

8.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

9.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

10.
The motion of Adria, the largest lithospheric fragment in the Central Mediterranean region, has played an important role in the tectonic development of the surrounding mountain chains and even of distant areas, like the Eastern Alps or the Pannonian basin. The available paleomagnetic data were insufficient to constrain this motion, except in a general way. In this paper, new paleomagnetic results are presented from one of the stable parts of Adria which emerge from the Adriatic Sea. The results were obtained on weakly magnetic platform carbonates of the mud-supported type, collected from 21 geographically distributed localities.The results, combined with mean paleomagnetic directions from selected localities from a pioneer study in Istria that were chosen using statistical criteria, were divided into three age groups (Tithonian–Aptian, Albian–Cenomanian, Turonian–Coniacian). The paleomagnetic poles calculated for each of them (Tithonian–Aptian): λ(N) = 47°, (E) = 275°, k = 67, α95 = 9.4°, N = 5; Albian-Cenomanian: λ(N) = 58°, (E) = 253°, k = 145, α95 = 4.3°, N = 9; Turonian–Coniacian: λ(N) = 63°, (E) = 261°, k = 50, α95 = 7.3°, N = 9) reveal a moderate shift during the Cretataceous, which is comparable with that calculated from the African reference poles. However, the Istrian apparent polar wander path is slightly displaced from the African curve, as a consequence of about 10° counterclockwise rotation of Istria, with respect to Africa. This rotation angle is more that 10° smaller than the difference measured for the Mid-Late Eocene between the paleomagnetic direction of platform carbonates from Istria and the African reference direction. This difference may be the consequence of a small clockwise rotation of Istria, with respect to Africa, most probably at the end of Cretaceous.  相似文献   

11.
The northernmost Kamchatka Peninsula is located along the northwestern margin of the Bering Sea and consists of complexly deformed accreted terranes. Progressing inland from the northwestern Bering Sea, the Olyutorskiy, Ukelayat and Koryak superterranes (OLY, UKL and KOR) are crossed. These terranes were accreted to the backstop Okhotsk-Chukotsk volcanic-plutonic belt (OChVB) in northernmost Kamchatka. A sedimentary sequence of Albian to Maastrichtian age overlaps the terranes and units of the Koryak superterrane, and constrains their accretion time. A paleomagnetic study of blocks within the Kuyul (KUY) terrane of the Koryak superterrane was completed at two localities (Camp 2: λ=61.83°N, φ=165.83°E and Camp 3: λ=61.67°N, φ=164.75°E). At both localities, paleomagnetic samples were collected from Late Triassic (225–208 Ma) limestone blocks (2–10 m in outcrop height) within a melange zone. Although weak in remanent magnetization, two components of remanent magnetization were observed during stepwise thermal demagnetization at 32 sites. The A component of magnetization was observed between room temperature and approximately 250 °C. This magnetic component is always of downward directed inclination and shows the best grouping at relatively low degrees of unfolding. Using McFadden–Reid inclination-only statistics and averaging all site means, the resulting A component mean is Iopt=60.3°, I95=5.0° and n=36 (sites). The B magnetic component is observed up to 565 °C, at which temperature, most samples have no measurable remanent magnetization, or growth of magnetic minerals has disrupted the thermal demagnetization process. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, where bedding orientation differs within a block, most of these sites show the best grouping of B component directions at 100% unfolding, and two of the blocks display remanent magnetizations of both upward and downward directed magnetic inclination. Combining sites with Fisher estimates of kappa (k-value)≥13 and n (sites)≥3, the resulting overall B component paleolatitude and associated uncertainty are λobs=30.4°N or S, λ95=8.9° and n=19 (sites). When compared with the expected North America paleolatitude of λAPWP expected=57.9°N, our data support a model in which blocks within the Koryak superterrane are allochthonous and far travelled.  相似文献   

12.
Detailed palaeomagnetic and rock magnetic analyses provide improved palaeomagnetic results from 23 sites in the Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, East Antarctica. These intrusions are of similar age to their host, the ca. 1130 Ma Ritscherflya Supergroup (RSG). A mean direction of D=235.4°, I=−7.6° with k=45.9 and α95=4.5° was obtained from this study. When combined with previously reported results from 11 sites in the same region, including sites from the Ritscherflya Supergroup, it gives an overall mean direction for 34 sites from the igneous suite with D=236.5°, I=−3.6°, k=27.9 and α95=4.8°. Isothermal remanent magnetization (IRM) experiments on several specimens suggest magnetite or titanomagnetite as the primary remanence carrier, while high temperature magnetic susceptibility experiments indicate the presence of single domain particles. These observations, together with field evidence and the high coercivities and unblocking temperatures, support a primary origin for the observed characteristic remanence. The Borgmassivet palaeomagnetic pole lies at 54.5°E, 8.3°N with A95=3.3°. If Antarctica is moved to its Gondwanan position adjacent to southeast Africa, the Borgmassivet pole (BM) coincides with that of the African well-established, well-dated (1100 Ma) Umkondo Large Igneous Province pole, supporting the hypothesis that the Grunehogna craton of Dronning Maud Land was part of the Kalahari craton of southern Africa at ca. 1100 Ma.  相似文献   

13.
A detailed palaeomagnetic and magnetostratigraphic study of the Permian–Triassic Siberian Trap Basalts (STB) in the Noril'sk and Abagalakh regions in northwest Central Siberia is presented. Thermal (TH) and alternating field (AF) demagnetisation techniques have been used and yielded characteristic magnetisation directions. The natural remanent magnetisation of both surface and subsurface samples is characterised by a single component in most cases. Occasionally, a viscous overprint can be identified which is easily removed by TH or AF demagnetisation.The resulting average mean direction after tectonic correction for the 95 flows sampled in outcrops is D=93.7°, I=74.7° with k=19 and α95=3.3°. The corresponding pole position is 56.2°N, 146.0°E.Unoriented samples from four boreholes cores in the same regions have also been studied. They confirm the reversed–normal succession found in outcrops. The fact that only one reversal of the Earth's magnetic field has been recorded in the traps can be taken as evidence for a rather short time span for the major eruptive episode in this region. However, there is evidence elsewhere that the whole volcanic activity associated with the emplacement of the STB was much longer and lasted several million years.  相似文献   

14.
Three sites from Cretaceous limestone and Jurassic sandstone in northern Oaxaca, Mexico, were studied paleomagnetically. Thermal demagnetization isolated site-mean remanence directions which differ significantly from the recent geomagnetic field. The paleopole for the Albian–Cenomanian Morelos formation is indistinguishable from the corresponding reference pole for stable North America, indicating tectonic stability of the Mixteca terrane since the Cretaceous. Rock magnetic properties and a positive reversal test for the Bajocian Tecomazuchil sandstone suggest that the remanence could be of primary origin, although no fold test could be applied. The Tecomazuchil paleopole is rotated 10°±5° clockwise and displaced 24°±5° towards the study area, with respect to the reference pole for stable North America. Similar values were found for the Toarcien–Aalenian Rosario Formation, with 35°±6° clockwise rotation and 33°±6° latitudinal translation. These data support a post-Bajocian southward translation of the Mixteca terrane by around 25°, which was completed in mid-Cretaceous time.  相似文献   

15.
The Devonian Winnepegosis and Duperow Formations were examined in well 4-27-11-22W1, located in at the eastern edge of the Williston Basin in Manitoba. The variation in characteristic remanent magnetization (ChRM) direction and magnetic mineral carrier is obvious: the older Winnepegosis Formation has a primary or early post-depositional magnetization held in magnetite or pyrrhotite (n = 15; D = 324.1°, I = − 27.3°, α95 = 10.4°, k = 15.7), whereas the younger Duperow Formation magnetizations are carried by hematite and could be as late as Early Jurassic. The variability may be attributable to the intervening Prairie Evaporite acting as an aquitard to fluid migration.  相似文献   

16.
A paleomagnetic study of platform-facies carbonate rocks of the mid-Cretaceous Morelos Formation and deep-water carbonate rocks of the overlying Upper Cretaceous Mezcala Formation, sampled at Zopilote canyon, in Guerrero State, southern Mexico, indicates that their characteristic magnetization was acquired contemporaneously with folding of these rocks during the Late Cretaceous Laramide orogeny. The remanence carrier is interpreted to be magnetite, although other mineral phases of high coercivity carry recent secondary overprints. The overall mean is of Dec=323.1° and Inc=36.5° (k=162.7; α95=2.7°; N=18 sites; 64% unfolding). Comparison with the North America reference direction indicates that this area has experienced a small, yet statistically significant, counterclockwise direction of 19.2±4.0°. Similar rotations are documented in other localities from southern Mexico; rotations are linked to mid-Tertiary deformation associated with the left-lateral strike-slip fault system that accommodated motion of the Chortis and Xolapa blocks.  相似文献   

17.
Samples collected from folded carbonate rocks of the Early Permian Copacabana Group exposed in the Peruvian Subandean Zone have been subjected to detailed palaeomagnetic analysis. Thermal demagnetisation of most samples yield stable high unblocking temperature directions dominantly carried by titanomagnetite minerals. This remanence, identified in 32 samples (43 specimens), is exclusively of reverse polarity consistent with the Permian–Carboniferous Reversal Superchron (PCRS). The overall directions pass the fold test at the 99% confidence level and are considered as being a pre-folding remanence acquired in Early Permian times. The Copacabana Group yields an overall mean direction of D = 166°, I = +49° (α95 = 4.5°, k = 131.5, N = 9 sites) in stratigraphic coordinates and a corresponding palaeosouth pole position situated at λ = 68°S,  = 321°E (A95 = 5.2°, K = 100). Combining this pole with the coeval high quality data from South America, Africa and Australia results in a mean pole for Gondwana situated at λ = 34.4°S,  = 065.6°E (A95 = 4.9°, K = 73.6, N = 13 studies) in African coordinates. This pole position supports a Pangaea B palaeogeography in Early Permian times. In contrast, the combined pole for Gondwana diverges from the coeval Laurasian mean pole when assuming the Pangaea A-type configuration. Poor quality of the Gondwana dataset and inclination shallowing in sediments seem to play no role in the misfit between the Permian–Triassic poles from Gondwana and Laurasia in Pangaea A reconstruction.  相似文献   

18.
A palaeomagnetic study has been carried out in the Tethyan Himalaya (TH; the northern margin of Greater India). Twenty-six palaeomagnetic sites have been sampled in Triassic low-grade metasediments of western Dolpo. Two remanent components have been identified. A pyrrhotite component, characterized by unblocking temperatures of 270–335 °C, yields an in situ mean direction of D=191.7°, I=−30.9° (k=29.5, α95=5.7°, N=23 sites). The component fails the fold test at the 99% confidence level (kin situ/kbed=6.9) and is therefore of postfolding origin. For reason of the low metamorphic grade, this pyrrhotite magnetization is believed to be of thermo-chemical origin. Geochronological data and inclination matching indicate an acquisition age around 35 Ma. The second remanence component has higher unblocking temperatures (>400 °C and up to 500–580 °C range) and resides in magnetite. A positive fold test and comparison with expected Triassic palaeomagnetic directions suggest a primary origin.The postfolding character of the pyrrhotite component, and its interpreted age of remanence acquisition, implies that the main Himalayan folding is older than 35 Ma in the western Dolpo area. This study also suggests that the second metamorphic event (Neo-Himalayan) was more significant in the Dolpo area than the first (Eo-Himalayan) one.A clockwise rotation of 10–15° is inferred from the pyrrhotite component, which is compatible with oroclinal bending and/or rotational underthrusting models. This rotation is also supported by the magnetite component, indicating that no rotation of the Tethyan Himalaya relative to India took place before 35 Ma.  相似文献   

19.
For a detailed palaeomagnetic research on Upper Permian red beds in the Wardha Valley (Central India) 265 samples from 47 sites at 6 localities were investigated.The samples from 3 localities (17 sites) appeared to be completely remagnetized during Early Tertiary times by the vast Deccan Trap flood basalts effusions. The samples from 22 sites of the other three localities (results from 8 sites rejected) could become cleaned from hard secondary Deccan Trap components by detailed thermal demagnetization.The resulting primary magnetization component reveals a mean direction (regardless of polarity, 7 sites normal, 15 sites reversed): D = 101.5°, I = +58.5°, α95 = 6.5°, N = 3. This mean direction corresponds to a pole position at 129° W 4° N (dp = 7°, dm = 9.5°). This pole position fits well with other acceptable Late Permian—Early Triassic pole positions for the Indian subcontinent. From these acceptable results, a mean Permo-Triassic pole for the Indian subcontinent was computed at: 125° W 6°N. This Indian Permo-Triassic pole position, when compared with data from other Gondwanaland continents, suggests the hypothesis of an early movement between India and Africa before Permo-Triassic times.The partial or total remagnetization of some Indian red beds, mainly of Gondwana age, during Deccan Trap times is explained as acquisition of viscous Partial Thermoremanent Magnetization. This mechanism was advanced by Briden (1965), Chamalaun (1964) and Irving and Opdyke (1965).  相似文献   

20.
The Mascot–Jefferson City (M-JC) Mississippi Valley-type (MVT) deposits are in the Valley and Ridge province of the Appalachian orogen in East Tennessee. They have been a major source of zinc for the USA but their age is uncertain and thus their genesis controversial. About 10 specimens from each of 37 sites have been analysed paleomagnetically using alternating field and thermal step demagnetisation methods and saturation isothermal remanence methods. The sites sample limestones, dolostones, breccia clasts and sphalerite–dolomite MVT mineralisation from mines in the Lower Ordovician Kingsport and Mascot formations of the Knox Group. The characteristic remanent magnetisation (ChRM) is carried by magnetite in the limestones, by both magnetite and pyrrhotite in the dolostones and by pyrrhotite preferentially to magnetite in the mineralisation. Mineralized sites have a more intense ChRM than non-mineralised, indicating that the mineralising and magnetisation event are coeval. Paleomagnetic breccia tests on clasts at the three sites are negative, indicating that their ChRM is post-depositional remagnetisation, and a paleomagnetic fold test is negative, indicating that the ChRM is a remagnetisation, and a post-dates peak Alleghanian deformation. The unit mean ChRM direction for the: (a) limestones gives a paleopole at 129°E, 12°N (dp=18°, dm=26°, N=3), indicating diagenesis formed a secondary chemical remanent magnetisation during the Late Ordovician–Early Silurian; (b) dolomitic limestones and dolostone host rocks gives a paleopole at 125.3°E, 31.9°N (dp=5.3°, dm=9.4°, N=7), recording regional dolomitisation at 334±14 Ma (1σ); and (c) MVT mineralisation gives a paleopole at 128.7°E, 34.0°N (dp=2.4°, dm=4.4°, N=25), showing that it acquired its primary chemical remanence at 316±8 Ma (1σ). The mineralisation is interpreted to have formed from hydrothermal fluid flow, either gravity or tectonically driven, after peak Alleghanian deformation in eastern Tennessee with regional dolomitisation of the host rocks occurring as part of a continuum during the 20 Ma prior to and during peak deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号