首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Halogen contents for the widely distributed reference glasses BHVO‐2G, BIR‐1G, BCR‐2G, GSD‐1G, GSE‐1G, NIST SRM 610 and NIST SRM 612 were investigated by pyrohydrolysis combined with ion chromatography, total reflection X‐ray fluorescence analysis, instrumental neutron activation analysis, the noble gas method, electron probe microanalysis and laser ablation‐inductively coupled plasma‐mass spectrometry. Glasses BHVO‐2G, GSD‐1G and GSE‐1G have halogen contents that can be reproduced at the 15% level by all bulk techniques and cover a significant range in halogen mass fractions for F (~ 20–300 μg g?1), Cl (~ 70–1220 μg g?1) and Br (~ 0.2–285 μg g?1) and I (~ 9–3560 ng g?1). The BIR‐1G glass has low F (< 15 μg g?1), Cl (~ 20 μg g?1), Br (15 ng g?1) and I (3 ng g?1). The halogen contents for the silica‐rich NIST SRM 610 and 612 glasses were poorly reproduced by the different techniques. The relatively high Cl, Br and I abundances in glasses GSD‐1G and GSE‐1G mean that these glasses are well suited for calibrating spatially resolved micro‐analytical studies on silicate glasses, melt and fluid inclusions. Combined EPMA and laser ablation‐inductively coupled plasma‐mass spectrometry data for glass GSE‐1G demonstrate homogeneity at the 10% level for Cl and Br.  相似文献   

2.
Experimental determination of the pressure and temperature controls on Ti solubility in quartz provides a calibration of the Ti‐in‐quartz (TitaniQ) geothermometer applicable to geological conditions up to ~ 20 kbar. We present a new method for determining 48Ti mass fractions in quartz by LA‐ICP‐MS at the 1 μg g?1 level, relevant to quartz in HP‐LT terranes. We suggest that natural quartz such as the low‐CL rims of the Bishop Tuff quartz (determined by EPMA; 41 ± 2 μg g?1 Ti, 2s) is more suitable than NIST reference glasses as a reference material for low Ti mass fractions because matrix effects are limited, Ca isobaric interferences are avoided, and polyatomic interferences at mass 48 are insignificant, thus allowing for the use of 48Ti as a normalising mass. Average titanium mass fraction from thirty‐three analyses of low temperature quartz from the Czech Erzgebirge is 0.9 ± 0.2 μg g?1 (2s) using 48Ti as a normalising mass and Bishop Tuff quartz rims as a reference material. The 2s average analytical uncertainty for individual analyses of 48Ti is 8% for 50 μm spots and 7% for 100 μm spots, which offers much greater accuracy than the 21–41% uncertainty (2s) incurred from using 49Ti as an analyte.  相似文献   

3.
The strong spectral interference between Br‐ and Al‐induced X‐ray lines hampers the utilisation of electron probe microanalysis (EPMA) for measuring Br mass fractions in Al‐bearing minerals and glasses. Through measuring Br‐free Al‐bearing materials, we established an EPMA method to quantify the overlap from AlKα on BrLβ, which can be expressed as a linear function of the Al2O3 content. The count rate of the BrLβ peak signal was enhanced by high beam currents and long measurement times. Application of this EPMA method to Al‐ and Br‐bearing materials, such as sodalite and scapolite, and to five experimental glasses yielded Br mass fractions (in the range of 250–4000 μg g?1) that are consistent with those measured by microbeam synchrotron X‐ray fluorescence (μ‐SXRF) spectrometry. The EPMA method has an estimated detection limit of ~ 100–300 μg g?1. We propose that this method is useful for measuring Br mass fractions (hundreds to thousands of μg g?1) in Al‐bearing minerals and glasses, including those produced in Br‐doped experiments. In addition, the natural marialitic scapolite (ON70) from Mpwapwa (Tanzania) containing homogeneously distributed high mass fractions of Br (2058 ± 56 μg g?1) and Cl (1.98 ± 0.03% m/m) is an ideal reference material for future in situ analyses.  相似文献   

4.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

5.
A new natural rutile reference material is presented, suitable for U‐Pb dating and Zr‐in‐rutile thermometry by microbeam methods. U‐Pb dating of rutile R632 using laser ablation ICP‐MS with both magnetic sector field and quadrupole instruments as well as isotope dilution‐thermal ionisation mass spectrometry yielded a concordia age of 496 ± 2 Ma. The high U content (> 300 μg g?1) enabled measurement of high‐precision U‐Pb ages despite its young age. The sample was found to have a Zr content of 4294 ± 196 μg g?1, which makes it an excellent complementary reference material for Zr‐in‐rutile thermometry. Individual rutile grains have homogeneous compositions of a number of other trace elements including V, Cr, Fe, Nb, Mo, Sn, Sb, Hf, Ta and W. This newly characterised material significantly expands the range of available rutile reference materials relevant for age and temperature determinations.  相似文献   

6.
This study presents two matrix‐matched reference materials developed for petroleum Re‐Os measurements. We present the Re and Os mass fractions and 187Re/188Os and 187Os/188Os values (ratio of the number of atoms of the isotopes) for repeatedly measured aliquots (ca. 120–150 mg test portions) of the NIST Research Material 8505 (RM 8505) crude oil, and its asphaltene and maltene fractions, and ~ 90 g of homogeneous asphaltene powder isolated from this oil. Measurements were performed using the Carius tube‐isotope dilution negative‐thermal ionisation mass spectrometry methodology. The RM 8505 crude oil contains 1.98 ± 0.07 ng g?1 Re and 25.0 ± 1.1 pg g?1 Os, with Re‐Os isotope amount ratios of 452 ± 6 for 187Re/188Os and 1.51 ± 0.01 for 187Os/188Os (= 20, 95% conf.). The homogeneous asphaltene sample contains 16.52 ± 0.10 ng g?1 Re and 166.0 ± 0.9 pg g?1 total Os, and possesses isotope amount ratios of 574 ± 3 for 187Re/188Os and 1.64 ± 0.01 for 187Os/188Os (= 24, 95% conf.). The intermediate precision of these data makes the RM 8505 whole oil and the (~ 90 g) homogenised asphaltene appropriate petroleum matrix‐matched reference materials for Re‐Os measurements. The asphaltene fraction of the oil is the main carrier of Re and Os of the RM 8505 whole oil, and caution is suggested in using asphaltene and maltene fractions of a single oil for Re‐Os geochronology.  相似文献   

7.
An organic solvent‐free two‐step column procedure is presented that provided robust, high yield and super clean separation of Li from silicate rock sample matrices. The measured δ7Li value for BHVO‐2 of +4.29 ± 0.23‰ (1s) is comparable with the reported values. The δ7Li values for GSJ JP‐1 (+3.14 ± 0.41‰, 1s) and USGS DTS‐2 (+4.91 ± 0.34‰, 1s) presented here provide new reference values for ultramafic rock reference materials.  相似文献   

8.
Chromium (Cr) isotopes have been widely used in various fields of Earth and planetary sciences. However, high‐precision measurements of Cr stable isotope ratios are still challenged by difficulties in purifying Cr and organic matter interference from resin using double‐spike thermal ionisation mass spectrometry. In this study, an improved and easily operated two‐column chemical separation procedure using AG50W‐X12 (200–400 mesh) resin is introduced. This resin has a higher cross‐linking density than AG50W‐X8, and this higher density generates better separation efficiency and higher saturation. Organic matter from the resin is a common cause of inhibition of the emission of Cr during analysis by TIMS. Here, perchloric and nitric acids were utilised to eliminate organic matter interference. The Cr isotope ratios of samples with lower Cr contents could be measured precisely by TIMS. The long‐term intermediate measurement precision of δ53/52CrNIST SRM 979 for BHVO‐2 is better than ± 0.031‰ (2s) over one year. Replicated digestions and measurements of geological reference materials (OKUM, MUH‐1, JP‐1, BHVO‐1, BHVO‐2, AGV‐2 and GSP‐2) yield δ53/52CrNIST SRM 979 results ranging from ?0.129‰ to ?0.032‰. The Cr isotope ratios of geological reference materials are consistent with the δ53/52CrNIST SRM 979 values reported by previous studies, and the measurement uncertainty (± 0.031‰, 2s) is significantly improved.  相似文献   

9.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

10.
To evaluate the homogeneity of geological reference material BIR‐1a (basalt; United States Geological Survey, USGS) for Re‐Os isotopic studies at the 0.2–1.0 g test portion size level, sixty‐three precise measurement results of Re and Os mass fractions and isotope amount ratios were obtained over an 18‐month period. These data reveal that the reference material has higher Re (0.691 ± 0.022 ng g?1, 2s,= 63) and lower Os mass fractions (0.343 ± 0.089 ng g?1, 2s,= 63) than UB‐N (serpentinite, CRPG) and is homogeneous in 187Os/188Os isotope amount ratio (0.13371 ± 0.00092, 2s,= 63) at the 0.2–1.0 g test portion size level. The results are essentially consistent with previous views indicating that BIR‐1a gives precise measurement results for Re‐Os isotope amount ratio measurements at the 1 g test portion size level (Ishikawa et al., Chemical Geology, 2014, 384, 27–46; Meisel and Horan, Reviews in Mineralogy and Geochemistry, 2016, 81, 89–106). Based on these new Re‐Os data and previous studies, we propose BIR‐1a as a useful reference material that can be used in method validation and quality control and interlaboratory comparisons for studies dealing with mafic geological samples at test portion sizes of > 0.4 g.  相似文献   

11.
The low‐Sr content (generally < 100 μg g?1) in clinopyroxene from peridotite makes accurate Sr isotopic determination by LA‐MC‐ICP‐MS a challenge. The effects of adding N2 to the sample gas and using a guard electrode (GE) on instrumental sensitivity for Sr isotopic determination by LA‐MC‐ICP‐MS were investigated. Results revealed no significant sensitivity enhancement of Sr by adding N2 to the ICP. Although using a GE led to a two‐fold sensitivity enhancement, it significantly increased the yield of polyatomic ion interferences of Ca‐related ions and TiAr+ on Sr isotopes. Applying the method established in this work, 87Sr/86Sr ratios (Rb/Sr < 0.14) of natural clinopyroxene from mantle and silicate glasses were accurately measured with similar measurement repeatability (0.0009–0.00006, 2SE) to previous studies but using a smaller spot size of 120 μm and low‐to‐moderate Sr content (30–518 μg g?1). The measurement reproducibility was 0.0004 (2s, n = 33) for a sample with 100 μg g?1 Sr. Destruction of the crystal structure by sample fusion showed no effect on Sr isotopic determination. Synthesised glasses with major element compositions similar to natural clinopyroxene have the potential to be adopted as reference materials for Sr isotopic determination by LA‐MC‐ICP‐MS.  相似文献   

12.
Germanium (Ge) exists at trace levels in the Earth's crust and is a powerful geochemical tracer of the silicon (Si) cycle. This study proposes a simple and reliable method for determining Ge contents in environmental samples using ICP‐MS. As Si and Ge have very similar chemical properties, we investigated the applicability of the chemical preparation procedure developed for Si isotopes for the determination of Ge in environmental samples. Advantages of this procedure are as follows: (a) efficient removal of the matrix and main interferences affecting Ge determinations by ICP‐MS, (b) a low limit of detection (6 ng l?1), (c) relative repeatability of approximately 3% obtained on 74Ge and (d) robustness and accuracy based on agreement within errors with the published Ge values for rock reference materials (BHVO‐2, AGV‐2 and BCR‐2). This procedure allowed revision of the Ge values of three soil reference materials (1.67 ± 0.09 μg g?1, 2.41 ± 0.18 μg g?1, 1.89 ± 0.10 μg g?1 for GBW 07401, GBW 07404 and GBW 07407, respectively) and proposal of a value for the plant reference material ERM‐CD281 (70 ± 3 μg g?1). This method provides a convenient procedure for determining Ge mass fractions in environmental samples and opens the possibility of coupling two tracers of the Si biogeochemical cycle with a single measurement procedure.  相似文献   

13.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

14.
This study describes two methods (Procedures‐1 and ‐2) for the direct extraction of Au by an inorganic acid mixture (HClO4‐HBr‐HI‐aqua regia) from complex sample matrices. Standard PTFE jars at 200 °C were used to decompose test portions of 0.5–1 g, with subsequent precise and accurate analysis by ICP‐MS without any other preconcentration or separation. Procedure‐1 decomposed samples effectively without the necessity of leaching with HF and was developed for dust samples from e‐waste (electronic waste) processing; however, testing on geological reference materials showed very good results. The analyses of replicate decompositions (= 5) from both procedures yielded very good precision (< 5% RSD) for most of the reference materials. The accuracy achieved was better than ± 10%, with the exception of NIST SRM 2782 data from Procedure‐1. Two unknown samples of dust from e‐waste processing (P‐1 and VM‐1) exhibited elevated concentrations of Au (21.31–61.64 μg g?1) with precision better than 10% (= 5). The proposed techniques are simple, sensitive and sparing in the use of chemicals, and are designed for a variety of e‐waste dust samples. No significant influences were observed for the predicted spectral interferences on mass 197Au.  相似文献   

15.
The characterisation of relative copper isotope amount ratios (δ65Cu) helps constrain a variety of geochemical processes occurring in the geosphere, biosphere and hydrosphere. The accurate and precise determination of δ65Cu in matrix reference materials is crucial in the effort to validate measurement methods. With the goal of expanding the number and variety of available geological and biological materials, we have characterised the δ65Cu values of ten reference materials by MC‐ICP‐MS using C‐SSBIN model for mass bias correction. SGR‐1b (Green River shale), DOLT‐5 (dogfish liver), DORM‐4 (fish protein), TORT‐3 (lobster hepatopancreas), MESS‐4 (marine sediment) and PACS‐3 (marine sediment) have for the first time been characterised for δ65Cu. Additionally, four reference materials (with published δ65Cu values) have been characterised: BHVO‐1 (Hawaiian basalt), BIR‐1 (Icelandic basalt), W‐2a (diabase) and Seronorm? Trace Elements Serum L‐1 (human serum). The reference materials measured in this study possess complex and varied matrices with copper mass fractions ranging from 1.2 µg g?1 to 497 µg g?1 and δ65Cu values ranging from ?0.20‰ to 0.52‰ with a mean expanded uncertainty of ± 0.07‰ (U, k = 2), covering much of the natural copper isotope variability observed in the environment.  相似文献   

16.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

17.
A laser ablation multi‐collector inductively coupled plasma‐mass spectrometry (LA‐MC‐ICP‐MS) method was developed to obtain precise and accurate Pb isotopic ratio measurements in low‐Pb materials (< 10 μg g?1) using a combination of Faraday cups and ion counters (FC–IC). The low abundance 204Pb (~ 1.4%) was collected using an IC. A NBS 981 standard solution was used to cross‐calculate the FC–IC gain and to investigate the signal response characteristics of the IC. A significant, continuous and linear decrease in the FC–IC gain was observed within 1 hr, but this drift could be corrected using the calibrator‐sample‐calibrator bracketing method. In addition, a non‐linear response of the IC used in this study was observed and corrected by a non‐linear correction algorithm, which was established by measuring a series of gravimetrically prepared NBS 981 standard solutions (NIST SRM 981). Compared with the conventional arrangement, the use of the newly designed X skimmer cone and Jet sample cone improved the signal intensities from Pb isotopes by a factor of 1.9. Compared with only Faraday cups, using a combination FC–IC array was found to enhance the measurement repeatability (RSD) of 20xPb/204Pb by approximately one order of magnitude when the 204Pb intensity was < 8 mV. Eight natural glasses and the NIST SRM 612 reference material glass (as a calibration material) were measured to evaluate the new protocol for Pb isotope determination. The analytical results were in agreement with the reference values within 2s measurement uncertainties. For MPI‐DING ATHO‐G (5.67 μg g?1 total Pb), KL2‐G (2.07 μg g?1 total Pb) and ML3B‐G (1.38 μg g?1 total Pb), the typical accuracies of 20xPb/204Pb were 0.09% of preferred values with precisions of < 0.33% (2RSD). The Pb isotope ratios in feldspars from granodiorite and within mafic microgranular enclaves (MMEs) from the Fangshan pluton, North China, were measured using the present method. The Pb isotopic compositions of feldspars from the whole host granodiorite show that that are radiogenic in the margin zone and gradually become less radiogenic. For the MMEs, the Pb isotopic compositions of feldspars are highly variable and overlap with those of the whole host granodiorite. For single‐grain feldspar, the strong rim‐core‐rim variations of the Pb isotopic compositions and trace elements are interpreted to have been generated via magma mixing. These results suggest that the Fangshan pluton underwent magma mixing of mantle‐derived mafic magmas with felsic magmas, and the proportion of the mafic magma influx decreased over time.  相似文献   

18.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

19.
We present in this article a rapid method for B extraction, purification and accurate B concentration and δ11B measurements by ID‐ICP‐MS and MC‐ICP‐MS, respectively, in different vegetation samples (bark, wood and tree leaves). We developed a rapid three‐step procedure including (1) microwave digestion, (2) cation exchange chromatography and (3) microsublimation. The entire procedure can be performed in a single working day and has shown to allow full B recovery yield and a measurement repeatability as low as 0.36‰ (± 2s) for isotope ratios. Uncertainties mostly originate from the cation exchange step but are independent of the nature of the vegetation sample. For δ11B determination by MC‐ICP‐MS, the effect of chemical impurities in the loading sample solution has shown to be critical if the dissolved load exceeds 5 μg g?1 of total salts or 25 μg g?1 of DOC. Our results also demonstrate that the acid concentration in the sample loading solution can also induce critical isotopic bias by MC‐ICP‐MS if chemistry of the rinsing‐, bracketing calibrator‐ and sample solutions is not thoroughly adjusted. We applied this method to provide a series of δ11B values of vegetal reference materials (NIST SRM 1570a = 25.74 ± 0.21‰; NIST 1547 = 40.12 ± 0.21‰; B2273 = 4.56 ± 0.15‰; BCR 060 = ?8.72 ± 0.16‰; NCS DC73349 = 16.43 ± 0.12‰).  相似文献   

20.
In this study, a high‐precision method for the determination of Sm and Nd concentrations and Nd isotopic composition in highly depleted ultramafic rocks without a preconcentration step is presented. The samples were first digested using the conventional HF + HNO3 + HClO4 method, followed by the complete digestion of chromite in the samples using HClO4 at 190–200 °C and then complete dissolution of fluoride formed during the HF decomposition step using H3BO3. These steps ensured the complete digestion of the ultramafic rocks. The rare earth elements (REEs) were separated from the sample matrix using conventional cation‐exchange chromatography; subsequently, Sm and Nd were separated using the LN columns. Neodymium isotopes were determined as NdO+, whereas Sm isotopes were measured as Sm+, both with very high sensitivity using single W filaments with TaF5 as an ion emitter. Several highly depleted ultramafic rock reference materials including USGS DTS‐1, DTS‐2, DTS‐2b, PCC‐1 and GSJ JP‐1, which contain extremely low amounts of Sm and Nd (down to sub ng g?1 level), were analysed, and high‐precision Sm and Nd concentration and Nd isotope data were obtained. This is the first report of the Sm‐Nd isotopic compositions of these ultramafic rock reference materials except for PCC‐1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号