首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《水文科学杂志》2013,58(1):192-205
Abstract

Considering the geological conditions of the southwest of Boroujerd and northwest of Doroud, Iran, karst development is analysed with respect to the hydrodynamic behaviour of the main draining springs of the units and the karstic aquifers are classified as either those developed in Cretaceous limestone or those developed in Oligomiocene limestone. For this purpose, the yields of the main karstic springs of the region—Absardeh and Zoorabad (Cretaceous karstic limestone aquifer), Kalamsooz and Azizabad (Oligomiocene karstic limestone aquifer)—were measured and analysed. Analysis of the recession curve is used for hydrodynamical analysis and to construct the conceptual model for estimation of karst development in the selected aquifers. Based on the results, the dynamic storage capacity of the saturated zone in Cretaceous limestone is evaluated as low to medium and that in Oligomiocene limestone as medium to high. The dynamic storage capacity of the unsaturated zone in Cretaceous limestone is evaluated as high and that in Oligomiocene limestone as low to medium. Moreover, the contribution of quickflow in karstic aquifers developed in the Cretaceous limestone drained by the Absardeh and Zoorabad springs is 23.5 and 82.2%, respectively, and that for the Kalamsooz and Azizabad springs (Oligomiocene limestone) is 5.7 and 22.5%, respectively. Flow in the Cretaceous limestone aquifer drained by the Zoorabad Spring is of concentrated type and the main flow occurs in the well-developed karstic conduits. The main flow in the Oligomiocene limestone aquifer, drained by the Kalamsooz Spring, occurs in a network of joints and fractures and the contribution of concentrated flow is very low. The transmissivity of the saturated zone in the karstic aquifer drained by the Zoorabad and Absardeh springs is medium to high and that for the Kalamsooz and Azizabad springs is found to be low.  相似文献   

2.
In the Tyrrhenian region of central Italy, late Quaternary fossil travertines are widespread along two major regional structures: the Tiber Valley and the Ancona-Anzio line. The origin and transport of spring waters from which travertines precipitate are elucidated by chemical and isotopic studies of the travertines and associated thermal springs and gas vents. There are consistent differences in the geochemical and isotopic signatures of thermal spring waters, gas vents and present and fossil travertines between east and west of the Tiber Valley. West of the Tiber Valley, δ13C of CO2 discharged from gas vents and δ13C of fossil travertines are higher than those to the east. To the west the travertines have higher strontium contents, and gases emitted from vents have higher 3He/4He ratios and lower N2 contents, than to the east. Fossil travertines to the west have characteristics typical of thermogene (thermal spring) origin, whereas those to the east have meteogene (low-temperature) characteristics (including abundant plant casts and organic impurities). The regional geochemical differences in travertines and fluid compositions across the Tiber Valley are interpreted with a model of regional fluid flow. The regional Mesozoic limestone aquifer is recharged in the main axis of the Apennine chain, and the groundwater flows westward and is discharged at springs. The travertine-precipitating waters east of the Tiber Valley have shallower flow paths than those to the west. Because of the comparatively short fluid flow paths and low (normal) heat flow, the groundwaters to the east of the Tiber Valley are cold and have CO2 isotopic signatures, indicating a significant biogenic contribution acquired from soils in the recharge area and limited deeply derived CO2. In contrast, spring waters west of the Tiber Valley have been conductively heated during transit in these high heat-flow areas and have incorporated a comparatively large quantity of CO2 derived from decarbonation of limestone. The elevated strontium content of the thermal spring water west of the Tiber Valley is attributed to deep circulation and dissolution of a Triassic evaporite unit that is stratigraphically beneath the Mesozoic limestone. U-series age dates of fossil travertines indicate three main periods of travertine formation (ka): 220-240, 120-140 and 60-70. Based on the regional flow model correlating travertine deposition at thermal springs and precipitation in the recharge area, we suggest that pluvial activity was enhanced during these periods. Our study suggests that travertines preserve a valuable record of paleofluid composition and paleoprecipitation and are thus useful for reconstructing paleohydrology and paleoclimate.  相似文献   

3.
The Asian monsoon is one of the largest climatic systems in the world, but age of its onset has been estimated differently ranging from the late Eocene to the Quaternary. We investigated the sedimentology and stable isotopic compositions of the upper Eocene Jiuziyan Formation, a terrestrial limestone unit in the Jianchuan basin, Yunnan Province in China. This limestone formation is restricted in several localities in the central part of the basin. Previously, this has been characterized as palustrine carbonate and the transition to the sublacustrine deposit of the overlying Shuanghe Formation was interpreted as the appearance of wetter climate during the late Eocene. Our observations of macro- and microfacies revealed sedimentary fabrics indicating rapid CaCO3 precipitation, such as dendritic calcite and calcified reed stems, which are unlikely to develop in a simple lacustrine setting. High carbonate content (mostly >90 %) and restricted distribution of the Jiuziyan limestone indicate a depositional setting spatially limited and isolated from clastic influx. These findings, together with clearly higher δ13C values (−0.7 ‰ to +6.9 ‰) and lower δ18O values (−14.6 ‰ to −10.5 ‰) than those of the Shuanghe Formation, indicate that the limestone was mainly travertine, carbonate formed from endogenic spring water. The elevated δ13C resulted from a large amount of CO2 degassing from spring water with high pCO2. In addition, the occurrence of centimeter-scale lamination coupled with cyclic changes in δ13C and δ18O is almost identical with the modern annually-laminated travertine reported from Baishuitai in northern Yunnan Province, implying comparable amplitude of seasonal temperature and precipitation changes to the record of the modern travertine at Baishuitai. Our results do not contradict the previous interpretation of late Eocene wetting and additionally suggest the existence of the late Eocene monsoon climate in the Jianchuan basin.  相似文献   

4.
Two examples of travertine bridges are observed at 8 to 15 m above stream level in the Lower Zamanti Basin, Eastern Taurids, Turkey. Yerköprü‐1 and Yerköprü‐2 bridges are currently being deposited from cool karstic groundwaters with log PCO2 > 10?2 atm. The surface area and the total volume of travertine in Yerköprü‐1 bridge are 4350 m2 and 40 000 m3, whereas the values for Yerköprü‐2 are 2250 m2 and 20 000 m3, respectively. The interplay of hydrogeological structure, local topography, calcite‐saturated hanging springs, algal activity and rapid downcutting in the streambed appear to have led to the formation of travertine bridges. Aeration through cascades and algal uptake causes efficient carbon dioxide evasion that enhances travertine formation. Algal curtains aid lateral development of travertine rims across the stream. Model calculations based on a hypothetical deposit in the form of a half‐pyramid implied that lateral development should have occurred from both banks of the stream in the Yerköprü‐1 bridge, whereas one‐sided growth has been sufficient for Yerköprü‐2. The height difference between travertine springs and the main stream appears to be a result of Pleistocene glaciation during which karstic base‐level lowering was either stopped or slowed down while downcutting in the main stream continued. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Karst aquifers and springs are important with respect to their potential for supplying drinking water in regions suffering from water scarcity in Iran. Accordingly, it is essential to determine the recharge potential of the catchment and the regions with higher obtainability potential. This study provides a road map for the Sheshpeer catchment in southern Iran. A recharge potential (RP) map was produced from which a recharge index (RI) was computed for several selected springs in the catchment. Furthermore, the unit discharge (q) – defined as the average annual discharge for a given catchment area and unit rainfall depth for each spring – was calculated. The plot of q versus RI for the springs showed a linear positive relationship between the two variables (R 2 = 0.9). Applying the trend equation of this plot to the whole Sheshpeer karstic catchment reveals that its long-term recharge coefficient is 0.74.  相似文献   

6.
A systematic study of the chemo-isotopic characteristics and origin of the groundwater was carried out at six major qanats in the hyper-arid Gonabad area, eastern Iran. These qanats as a sustainable groundwater extraction technology have a long history, supporting human life for more than a thousand years in this region. The Gonabad qanats are characterized by outlet electrical conductivity (EC) values of 750 to 3900 µS/cm and HCO3-Na-Mg and Cl-Na water types. The Gonabad meteoric water line (GnMWL) was drawn at the local scale as δ2H = 6.32×δ18O + 8.35 (with R2 = 0.90). It has a lower slope and intercept than the global meteoric water line due to different water vapor sources and isotope kinetic fractionation effects during precipitation in this arid region. The altitude effects on isotopic content of precipitation data were derived as δ18O = (−0.0031 × H(m.a.s.l))−1.3). The δ2H and δ18O isotopes signatures demonstrate a meteoric origin of the groundwater of these qanats. The shift of the qanat's water samples from the local meteoric water line (LMWL) in a dry period with higher temperatures is most probably due to evaporation during the infiltration process and water movement in qanat gallery. Based on the isotopic results and mass balance calculations, the qanats are locally recharged from an area between 2000 to 2400 m.a.s.l of nearby carbonate formations and coarse alluvial sediments. The dissolution of evaporate interlayers in Neogene deposits deteriorates the groundwater quality, especially in Baidokht qanat.  相似文献   

7.
Time patterns of karst denudation in northwest Georgia (U.S.A.) were investigated at three spring sites for 12 months and at five stream sites for 10 years. Rainfall was evenly distributed and showed no significant seasonality. At the springs, as well as the streams, water hardness was largely controlled by discharge. At the springs, soil pCO2 and water pH were strongly correlated (r + -0·69 to -0·83). Solute transport in spring waters was highly seasonal, with two conduit flow springs removing more limestone in the winter, and the diffuse flow spring removing more during the growing season. At the stream sites, most denudation occurred during the winter and spring seasons, and least during the summer. Fourier analysis showed that variations in denudation occur on deterministic (long-wave) as well as stochastic (shortwave) time scales. As contributing variables, discharge varied in short-wave and long-wave cycles, whereas soil pCO2 showed only a long-wave cycle. The 12 month deterministic cycles were the most important, with changes in discharge taking precedence over soil pCO2. Time series regression explains up to 69 per cent of changes in denudation through rain and soil pCO2. Time cycles in available water are the key controlling factor of denudation, and amounts of available soil CO2 may not be as important in the temporal patterns of karst downwearing as has been believed previously.  相似文献   

8.
Springs are complex and taxa rich ecosystems. Diatom assemblages have received very little attention in spring ecosystems in Iran; hence, the diatom assemblage in three selected springs in northeast Iran, were investigated using multivariate analysis together with hydro chemical measures. For this purpose, water and diatom samples collected during four seasons of 2019. Hydrochemistry results revealed that water-rock interaction is the most important factor in changing the water chemistry of studied springs and their waters produced from carbonate reservoir rocks (mainly calcite). As a result, Ca-HCO3 is predominate water type in all three springs. In this study, 75 diatom taxa identified, from which 55 were included in the analysis. Cluster analysis based on diatoms relative abundance, clustered samples in two major groups and third small group. Results of the indicator species analysis for groups and DCA analysis were in the absolute conformity. Results revealed that the diatom assemblage dominated by combination of early colonizer taxa, spring indicator taxa and cosmopolitan taxa; most of them also reported from different spring types. The results also showed that the spring’s diatom composition influence by size and morphology of the springs.  相似文献   

9.
Coastal eutrophication poses an increasing risk to ecosystem health due to enhanced nutrient loading to the global coastline. Submarine groundwater discharge (SGD) represents a significant pathway for nitrate-nitrogen (NO3-N) transport to the coast, but diffusive SGD transport is difficult to monitor directly, given the low flux rates and expansive discharge areas. In contrast, focused SGD from intertidal springs can potentially be sampled and directly gauged, providing unique insight into SGD and associated contaminant transport. Basin Head is a coastal lagoon in Prince Edward Island, Canada that is a federally protected ecosystem. Nitrate-nitrogen is conveyed from agricultural fields in the contributing watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. We used several field methods to characterize groundwater discharge, nutrient loading, and in-channel mixing associated with intertidal springs. The tributaries and intertidal springs were gauged and sampled to estimate a representative summer nitrate load to the lagoon. Our analysis revealed that NO3-N export to the lagoon through tributaries and springs throughout summer 2023 was on average 401 kg N/month, with the combined spring loading comparable in magnitude to the combined tributary loading. We collected thermal infrared and visual imagery using drone surveys and found spatial overlap between cold-water plumes from the spring discharge and macroalgae blooms, indicating the local thermal and ecosystem impacts of the focused SGD. We also mapped the electrical resistivity (salinity) distribution in the water column around one large spring with electromagnetic geophysics at different tidal stages to reveal the three-dimensional spring plume dynamics. Results showed that the fresher spring water floated above the saline lagoon water with the brackish plume oriented in the direction of the tidal current. Collectively, our multi-pronged field investigations help elucidate the hydrologic, thermal, and nutrient dynamics of intertidal springs and the cascading ecosystem impacts.  相似文献   

10.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   

11.
Most thermal spring discharges of Rajasthan and Gujarat in northwestern India have been sampled and analysed for major and trace elements in both the liquid and associated gas phase, and for 18O/16O, D/H (in water), 3He/4He and 13C/12C in CO2 (in gas) isotopic ratios. Most thermal springs in Rajasthan are tightly associated to the several regional NE–SW strike-slip faults bordering NE–SW ridges formed by Archaean rocks at the contact with Quaternary alluvial and aeolian sedimentary deposits of the Rajasthan desert. Their Ca–HCO3 immature character and isotopic composition reveals: (1) meteoric origin, (2) relatively shallow circulation inside the crystalline Archaean formations, (3) very fast rise along faults, and (4) deep storage temperatures of the same order of magnitude as discharging temperatures (50–90°C). Thermal spring discharges in Gujarat are spread over a larger area than in Rajasthan and are associated both with the NNW–SSE fault systems bordering the Cambay basin and the ENE–WSW strike-slip fault systems in the Saurashtra province, west of the Cambay basin. Chemical and isotopic compositions of springs in both areas suggest a meteoric origin of deep thermal waters. They mix with fresh or fossil seawater entering the thermal paths of the spring systems through both the fault systems bordering the Cambay basin, as well as faults and fractures occurring inside the permeable Deccan Basalt Trap in the Saurashtra province. The associated gas phase, at all sampled sites, shows similar features: (1) it is dominated by the presence of atmospheric components (N2 and Ar), (2) it has high crustal 4He enrichment, (3) it shows crustal 3He/4He signature, (4) it has low CO2 concentration, and (5) the only analysed sample for 13C/12C isotopic ratio in CO2 suggests that CO2 has a strong, isotopically light organic imprint. All these features and chemical geothermometer estimates of spring waters suggest that any active deep hydrothermal system at the base of the Cambay basin (about 2000–3000 m) has low-to-medium enthalpy characteristics, with maximum deep temperature in the storage zone of about 150°C. In a regional overview, both thermal emergences of Rajasthan and Gujarat could be controlled by the counter-clockwise rotation of India.  相似文献   

12.
Variations in the isotopic composition of water were used to define the mechanism of recharge of the Assopos riverplain and the Kalamos Attikis coastal brackish karst springs. The plain is mainly recharged by local rain water, while the karst springs are fed by the Parnis mountain system, the mean recharge altitude being estimated in the order of 870 m. The apparent velocity and the underground pathway of the water feeding the springs were deduced and the most convenient sites for the drilling of production wells for recovery of the spring water before salinization were sited. As a result, 73,000 m3 of water are now pumped per day and used as additional potable water for the Athens area, comprizing about one-sixth of the mean daily consumption.  相似文献   

13.
Abstract

An aquifer can be used not only as water source but also as a regulating reservoir linked to a water supply system, planning the operation of such reservoirs calls for a good knowledge of the characteristics and limitations of the aquifer, an estimate of its natural replenishment and outflows, as weil as the determination of a programme for pumping and artificial recharge.

A limestone aquifer of karstic nature, heavily exploited and artificially recharged, has been studied recently with respect to its storage capacity and responses to a planned scheme of operations established for the national water supply systems.

The physical characteristics of this aquifer, its inflows, outflows and dynamic behaviour, were first determined by geological and hydrological investigations. The dynamic model obtained was then verified and improved by use of a resistor-capacitor electric analog constructed for this purpose. Later on, several operational alternatives were tested on the same analog. An optimization analysis was performed on a simplified single cell model representing the aquifer system. The methodology of such integrational operation is discussed in light of the results obtained.  相似文献   

14.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

15.
Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na+, K+ and Ca2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl thermal water with cool, low-Cl components. A 350 to 390°C component with Cl ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K+, Na+, Ca2+ and Mg2+ concentrations, but produces insufficient Cl or F for measured concentrations in the warm springs. The ratio of aNa/aH, and Cl are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl waters involved in mixing.The cold waters collected from southwestern Yellowstone Park have δD values ranging from −118 to −145 per mil and δ18O values of −15.9 to −19.4 per mil. Two samples from nearby Island Park have δD values of −112 and −114 per mil and δ18O values of −15.1 and −15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on ascent to the surface. Many of the hot springs with higher δD values may contain in addition a significant amount of high-D, low-Cl, acid-sulfate or steam-heated meteoric water. Mixing models, Cl content and isotopic compositions of thermal springs suggest that 30% or less of a deep thermal component is present. For example, the highest-temperature springs from Three Rivers, Silver Scarf and Upper Boundary Creek thermal areas contain up to 70% cool meteoric water and 30% hot water components, springs at Summit Lake and Middle Boundary Creek spring 57 are acid-sulfate or steam-heated meteoric water; springs 27 and 48 from Middle Boundary Creek and 49 from Mountain Ash contain in excess of 50% acid-sulfate water; and Three Rivers spring 46 and Phillips could result from mixing hot water with 55% cool meteoric water followed by mixing of acid-sulfate water. Extensive dilution by cool meteoric water increases the uncertainties in quantity and nature of the deep meteoric, thermal component.  相似文献   

16.
In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south‐west of Iran using 22‐years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment.  相似文献   

17.
The precipitation of freshwater carbonates (tufa) along karstic rivers is enhanced by degassing of carbon dioxide (CO2) downstream of karstic springs. However, in most karstic springs CO2 degassing is not enough to force the precipitation of tufa sediments. Little is known about the role of dissolution of gypsum or dolomite in the hydrochemistry of these systems and how this affects the formation of tufa deposits. Here we present a monitoring study conducted over a year in Trabaque River (Spain). The river has typical karst hydrological dynamics with water sinking upstream and re‐emerging downstream of the canyon. Mixing of calcium–magnesium bicarbonate and calcium sulphate waters downstream of the sink enhances the dissolution of carbonates and potentially plays a positive role in the formation of tufa sediments. However, due to the common‐ion effect, dissolution of dolomite and/or gypsum causes precipitation of underground calcite cements as part of the incongruent dissolution of dolomite/dedolomitization process, which limits the precipitation of tufa sediments. Current precipitation of tufa is scant compared to previous Holocene tufa deposits, which likely precipitated from solutions with higher saturation indexes of calcite (SIcc values) than nowadays. Limited incongruent dissolution of dolomite/dedolomitization favours higher SIcc values. This circumstance occurs when waters with relatively high supersaturation of dolomite and low SO42? composition sink in the upper sector of the canyon. In such a scenario, the process of mixing waters enhances the exclusive dissolution of limestones, preventing the precipitation of calcite within the aquifer and favouring the increase of SIcc values downstream of the springs. Such conditions were recorded during periods of high water level of the aquifers and during floods. This research shows that the common‐ion effect caused by the dissolution of gypsum and/or dolomite rocks can limit [or favour] the precipitation of tufa sediments depending on the occurrence [or not] of incongruent dissolution of dolomite/dedolomitization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The hydrochemical analyses of twenty-three springs were used to determine the properties and types of groundwater of the Tertiary-Quaternary Aquifer of northern Jordan. The result shows that the geological formation influences the quality of the investigated groundwater more than the anthropogenic factors. The water of the Quaternary-Tertiary aquifer is enriched in Ca++ due to the dissolution of the nearby carbonate rocks. The investigated water has a low EC values with Ca(Na)-HCO3 water type. Most springs belong to this hydrochemical facies except Malka. Groundwater in the Malka wells has high salinity with NaCl waters and a strong Ca(Mg)-HCO3 facies (900 to 1000 mg/l TDS). The area long-term hydrochemical data have been also evaluated; general trend of increase of the analyzed ion was observed. Bicarbonate represents the most abundant anion in the studied water, which exceeds the permissible limits. Nitrates (NO 3 ? ) also exceed the permissible limit and are the most common contaminant in the investigated water. Data on dissolved major and trace elements (K+, Na+, Mg2+, Ca2+, Cl?, SO 4 2? , Fe, Zn, Cu and Pb) in the investigated water revealed that the concentrations lie within the natural background range. The positive correlation values between various ions indicate that most of ions come from same lithological sources. According to the residual sodium carbonate, and EC values, the studied springs are suitable for agricultural purposes.  相似文献   

19.
The study aims to measure the hydrological behavior and nutrients dynamics of the springs located in different landscapes of Kosi basin, Indian central Himalaya. A total number of eight springs were considered for the present investigation, each landscape represented by one spring. The monitoring for hydrological measurement was conducted in January 1998 to December 1999, the interval between two successive measurements was 10 days, i.e., 240 hr (total 72 observations were made). Water quality measurement was done in three main seasons, i.e., winter (Jan.), summer (June) and monsoon (Aug.) of 1998 and 1999, and the average value for measured parameters were calculated. These samples were analyzed for pH, electrical conductivity, total dissolved solids, dissolve oxygen, Ca2?, Mg2?, Na?, Cl?, F?, NO 3 ? , and SO 4 2? . Hydrology of spring’s water showed that the reserve forest has a higher water retention capacity than the other landscapes, and the spring recharge capacity highly influenced by the settlements, open grazing, mismanaged agricultural and deforestation activities. The spring water chemistry shows that the springs located in forest and sparsely populated areas have lower EC, TDS, cationic and anionic concentration and are safe for drinking purposes, but those in irrigated land and densely populated areas feature higher EC, low dissolved oxygen concentration and higher NO 3 ? , which makes the water of these springs unsuitable for drinking. F concentration was higher in the springs located in the settlement area. In brief, the study indicates that the unmanaged drains, very poor and old pattern of sewage disposing system result in an increase in Na?, Cl?, F?, NO 3 ? , and SO 4 2? concentration as compared to the springs in agricultural and forested areas. All of the studied springs are badly managed which a is great threat for the longevity and quality of the water bodies, in particular, in Indian Central Himalayan region. This study suggests the ways of the constructional works, grazing. Forest resource extraction and agricultural activities in water bodies catchments area should also be controlled.  相似文献   

20.
The Sarabkalan Spring serves as a primary water supply to irrigation and domestic use in the Sirvan Region, Iran. As it has a highly variable discharge, understanding its teleconnections with large-scale climate variability is crucial. In this study, we first characterize the springshed and its corresponding karst aquifer system using genetic algorithm analysis on the spring discharge, water balance calculations, temporal variations of physicochemical parameters, and stable isotopes along with considering its geological settings. Then, the large-scale climate indices teleconnections with precipitation and spring discharge are studied using wavelet analysis. Results reveal that the springshed contains two karst subaquifers resulting from geological and morphological settings. Unlike most developed karst systems in Zagros, which show one peak, the spring has two principal flow peaks over most hydrological years where the second peak occurs over the dry season. It takes ∼99 d (from lag correlation over 2008-2019) and ∼145 d (from δ18O measurements over 2018-2019) for rain water to reach the Sarabkalan Spring. Moreover, intense precipitations would result in an increase in discharge and a decrease in electrical conductivity, Ca + Mg, HCO3, SO4, Cl, ionic strength, and δ18O of the spring because of the developed karst conduit(s). It is further found that a positive Pacific Decadal Oscillation phase coupled with El Niño causes an increase in both the precipitation and spring discharge, signifying the influence of the atmospheric circulations of the Pacific Ocean on the spring behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号