首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
一次高原低涡诱发西南低涡耦合加强的动力诊断分析   总被引:1,自引:0,他引:1  
利用2013年6月29日—7月2日期间逐6 h的NCEP 0. 5°×0. 5°全球预报场再分析GFS (Global Forecast System)资料,对一次引发特大暴雨的西南低涡和高原低涡耦合贯通加强过程进行动力诊断分析,结果表明:西南低涡和高原低涡耦合区上方在不同阶段均维持正涡度柱,呈现低空辐合和高空辐散的特征,并伴有强烈上升运动。垂直运动在耦合开始阶段最强,正涡度柱在耦合强盛阶段显著增强,高原低涡和西南低涡耦合贯通后,改变了涡度的垂直特征。西南低涡发展维持的涡动动能主要源于水平通量散度项和涡动动能制造项,摩擦耗散项和垂直通量散度项是其主要消耗项。高原低涡发展维持的涡动动能主要源于垂直通量散度项和区域平均动能与涡动动能之间的转换项,涡动动能制造项出现负值是其涡动动能减弱的主要原因。耦合期间强烈垂直运动将西南低涡的涡动动能向高原低涡输送,西南低涡对高原低涡发展维持有重要动力作用。  相似文献   

2.
云南一次切变线上中尺度低涡扰动的结构分析   总被引:5,自引:0,他引:5  
利用η中尺度数值模式模拟的时空高分辨输出、常规资料、GMS红外云图及TBB资料,对2002年6月25日切变线上中-α尺度低涡扰动的结构、形成过程及冷空气来源进行研究,结果表明,低涡环流的尺度属于中-α尺度,持续时间7小时左右,低涡成熟阶段,700hPa正涡度中心与低涡环流中心相重合,低空急流及强辐合中心位于低涡的东南象限;低涡环流由三股气流构成;低涡区上空存在超强散度柱、倾斜涡柱、深厚的上升运动区及特强垂直上升运动,超强散度柱与特强垂直上升运动互耦,强辐合、辐散中心发生在南、北风辐合、辐散且有强的υ分量垂直梯度处,低层正涡度中心的上方,存在一负涡度中心;最大的水汽辐合位于700hPa及550hPa;低涡区冷空气来自500hPa的滇缅高压;大暴雨中心位于低涡中心的东侧。  相似文献   

3.
利用常规观测资料、 ERA-5再分析数据、 FY-4A卫星资料,对2021年9月3-4日一次西北涡与西南涡共同作用引发的秦巴区域大暴雨过程进行了研究,探讨了两涡作用导致大暴雨的中尺度环境场特征,并对西南涡的形成过程进行诊断分析。结果表明:秦巴区域的大暴雨是在西北涡与西南涡共同作用下由中尺度对流复合体(Mesoscal Convective Complex, MCC)引起的,强降水位于MCC云顶亮温冷中心及后部偏冷空气一侧的亮温梯度大值区。西南涡生成前,西北涡后部的偏北气流与西南气流形成了中尺度切变线,在秦巴区域触发对流不稳定而激发出中尺度对流云团而产生降水;西南涡生成后与西北涡共同作用,使秦巴区域水汽的输送加强,对流层低层形成强烈辐合,正涡度和垂直上升运动加强,使MCC强烈发展并具有较长生命史,同时伴随β和γ中尺度的对流云团发展,加强了该区域的强降水,从而造成大暴雨。该过程中西南涡是由500 hPa低涡产生的正涡度和高位涡向下传递强迫,使西北涡后部偏北风与西南气流气旋性运动加强从而形成涡旋环流,西南涡与500 hPa低涡的垂直耦合使其发展为强大的涡旋系统,从而加强水汽的辐合上升运动以加...  相似文献   

4.
利用常规气象观测资料、陕西区域自动站观测资料、多源融合逐小时0.05°×0.05°格点降水资料、 NCEP1°×1°再分析资料和卫星探测资料对2019年8月2—4日西北地区东部一次由低涡向东北方向移动引发的暴雨过程进行了诊断分析。结果表明:500 hPa中纬度低槽、副热带高压、低槽携带的弱冷空气及来自台风外围和副高外围的暖湿空气为此次暴雨过程提供了非常有利的条件;大气整层水汽通量及水汽通量散度在本次低涡暴雨预报中具有一定的意义,水汽通量的突增对应降水的增强,水汽通量大值中心叠加强水汽通量辐合区对应强降水落区;500 hPa正涡度平流使低涡移动发展,对暴雨的发展和移动有很好的指导意义,对流层低层温度平流对低涡移动路径方面有良好预报指示作用;对流层上层高位涡向下伸展,分裂的高值扰动可促使中低层气旋涡度发展,影响低涡加强,对流层中低层700 hPa附近上正下负的分布形态促进了不稳定能量的释放,有利于低涡暴雨的发生;暴雨期间卫星云图上表现为逗点型云带,与低涡系统对应良好。  相似文献   

5.
利用欧洲中心ERA5 逐小时再分析资料对一次东北移西南涡活动特征进行诊断分析,得到以下结论:本次西南涡是在稳定的“东高西低”环流形势下生成和发展,高原涡诱发西南涡生成,在高原气流的引导下向东北方向移动,西南涡在向东北移动的过程中和高原涡耦合促使西南涡进一步发展。西南涡东北移过程中均有低空急流配合。西南涡初生阶段较为浅薄,动力特征较弱;东移发展过程中动力作用增强,正涡度发展至对流层顶,正涡度柱内“低层辐合-高层辐散”的特征显著,高层辐散大于低层辐合,强的高空抽吸作用促使低层辐合增强。涡度平流项、垂直输送项和拉伸项对西南涡的发展起到主要作用。视热源和视水汽汇在低涡发展阶段,中低层暖湿空气的加热使空气增温,从而使地面减压,有利于西南涡的发展;中高层凝结潜热和感热加热,使得对流层高层增温,促使高层出流加强,进一步增强西南涡的发展。  相似文献   

6.
利用NCEP逐日资料和常规观测资料对2009年7月30~31日一次四川盆地南部强降雨过程进行诊断分析。结果发现:西南涡在700hPa上表现得比较明显,当发展极强时,甚至在500hPa也出现闭合环流;西南低涡涡区内均有降水发生,强降水中心位于涡区东北侧。低层水汽通量散度负值辐合区的分布不仅对相应时段降水落区指示较好,而且对于未来6h雨区分布也有一定参考性,可作为短临预警指标。强降雨区与强正涡度辐合上升运动区有较好的对应关系,对流层低层湿位涡的负值区对降水落区指示较好,强降水区出现在中高层正值MPV1下沿最强区,以及MPV2正负值交界区。   相似文献   

7.
高原涡与西南涡相互作用暴雨天气过程的诊断分析   总被引:7,自引:1,他引:6  
利用动力诊断方法,对2008年7月20~22日高原低涡与低层西南低涡相互作用引发西南低涡强烈发展和四川大面积特大暴雨天气发生机理进行了诊断分析。分析表明:高原涡与西南涡涡心之间的纬向距离在5个纬度的时候,两者上升气流都在500 hPa以下,当两者继续东移,在经向上耦合的时候,二者同时得到发展,西南涡中心的上升气流达到300 hPa,而高原涡中心的上升气流突破200 hPa;西南涡在低层出现初期,在一定程度上制约了高原涡的发展,随着两者在经向方向发生耦合,上下涡度平流不同造成垂直差动,将激发500 hPa以下的上升运动与气旋性涡度加强,使得500 hPa与700 hPa涡心正涡度值的增大近1倍。并且涡前的正涡度变率使得高原涡发展并东移,待垂直耦合后,高原涡与盆地涡相互强迫作用促使气流上升运动加强也是导致高原低涡与西南低涡共同发展的一种机制。  相似文献   

8.
利用NCEP/NCAR Reanalysis 1°×1°格点资料和MICAPS实时观测资料,使用水汽散度垂直通量、湿螺旋度等新型诊断物理量,对2009年8月2~4日发生在重庆地区由西南低涡东移引发的暴雨做了综合分析。结果表明:水汽主要在大气低层850hPa附近积聚,上升运动强,水汽的辐合上升区域与降水大值区较吻合。500hPa湿z-螺旋度负值区水平分布与相应时段降水落区和强降水中心的分布对应较好,垂直分布上:暴雨区低层正涡度、水汽辐合旋转上升与高层负涡度、水汽辐散相配合,是触发暴雨的有利动力机制。   相似文献   

9.
引发暴雨天气的中尺度低涡的数值研究   总被引:1,自引:1,他引:0  
2008年7月17—19日发生在山东的大到暴雨天气是由“海鸥”台风和副热带高压共同向山东输送水汽,与弱冷空气相互作用造成的。对流层低层的中尺度低涡是暴雨天气的直接制造者。利用常规观测资料和中尺度模式WRF(Weather Research and Forecasting)的模拟资料对该中尺度低涡的结构及形成机制进行了分析研究。结果表明,数值模拟可以清楚地捕捉到中尺度低涡东移过程中有新的涡旋中心形成,并与原来的涡旋中心合并的过程,而不是简单的沿切变线东移。中尺度低涡形成在增温增湿明显、上升运动为主的对流区内;中尺度低涡形成后其中心转为下沉运动,对流区东移,降水区位于低涡的东北和东南象限。中尺度低涡上空近地面层的冷池、600~400hPa的弱冷空气堆、900~850hPa的弱风区及高低空急流耦合发展是中尺度低涡形成和发展阶段的重要特征。中尺度低涡减弱阶段,下沉运动变强,低空急流和高空出流都明显减弱。涡度方程的收支表明,对流层低层的散度项、倾侧项及对流层中层的水平平流项和铅直输送项是正涡度的主要贡献者。中低层的水平辐合、涡度由低层向高层的垂直输送都有利于中尺度低涡的形成和发展。倾侧项对中尺度低涡的形成也有重要贡献。中尺度低涡形成后期,低层辐合、高层辐散及垂直输送的减弱导致正涡度制造的减弱,从而使中尺度低涡减弱。  相似文献   

10.
一次西南涡影响云南强降水过程分析   总被引:7,自引:6,他引:7  
张腾飞  张杰  马联翔 《气象科学》2006,26(4):376-383
通过对2004年8月4日西南涡影响下云南强降水过程的环流背景、卫星云图演变以及动力、热力条件的分析,发现这次西南涡是一个具有斜压性的极其深厚的系统,随高度前倾,高层500 hPa上的西南涡表现尤为明显,并且诱发了低层700 hPa西南涡的产生,强降水主要出现在西南涡的西南方;强降水与强上升运动区和正涡度区有很好的对应关系,并且正涡度和上升运动的出现比气旋性环流场有24 h的提前时间,对于强降水预报更具有预示性,它们是一个逐渐由高层向低层发展的过程;中-β尺度对流云团在金沙江河谷南移合并加强,形成了中-α尺度涡旋状云系,其中的对流云团在强降水中作用较大;强降水正是出现在对流层低层(MPV1 MPV2)的负值范围内,这也说明西南涡涡旋云系的发展与正压和斜压不稳定都有关系,对流层低层MPV1<0和MPV2<0有利于暴雨的发生。  相似文献   

11.
利用WRF模式对2009年7月29日的一次高原低涡个例进行数值模拟,研究了凝结潜热加热及其与对流活动的反馈在高原低涡发生发展过程中的作用及影响机制。通过模拟结果与实况资料的对比分析,发现WRF模式能够较好地模拟此次低涡的移动路径、中心强度和降水场分布。不考虑凝结潜热加热效应的敏感性试验结果中,模式模拟的低涡移动迟滞,降水量减少,并在移动至高原中部后迅速减弱消失。进一步分析高原低涡的结构发现,凝结潜热加热使得低涡中心附近的上升运动延伸至高层,并产生较强的对流活动,而更为深厚的上升运动又释放出较多的潜热,从而形成一种正反馈机制。位涡收支诊断分析表明,低层凝结潜热加热垂直梯度项产生的正位涡变化有利于高原低涡的增强与东移,位涡垂直通量散度项与凝结潜热加热垂直梯度项引起的位涡变化趋势相反。在高原低涡的形成和发展阶段,由于凝结潜热加热与对流活动间的正反馈机制,潜热加热垂直梯度项引起的正位涡增强,凝结潜热加热对低层的位涡变化起主要作用,有利于高原低涡的增强与东移;低涡进入成熟阶段后,凝结潜热的贡献减小,位涡水平通量散度项与位涡垂直通量散度项对位涡的变化起主要作用。  相似文献   

12.
一次河北大暴雨的华北低涡结构和涡度收支分析   总被引:1,自引:0,他引:1  
田秀霞  邵爱梅 《湖北气象》2008,27(4):320-325
利用Micaps系统下常规资料、云图资料和NCEP全球再分析资料,对2004年7月11-12日发生在河北省中南部的一次局地大暴雨个例进行了诊断分析。结果表明:200hPa西风槽、500hPa华北低涡和中低层偏东风,是这场暴雨的直接影响系统,该过程中的华北低涡为低层冷心、高层暖心结构,具有随高度向西北倾斜的特征,涡度场特征明显。暴雨区对应着深厚的正涡度区,散度场结构零乱,非高层辐散、低层辐合的配置,暴雨区上空上升运动较强。冷空气来源于500hPa以下的东北地区,水汽的源地来自渤海,低层偏东风可能是暴雨区所需水汽的主要携带者。水平涡度平流项和水平涡度辐散项作用相反,水平涡度辐散项对总涡度起直接作用且为正贡献,而垂直平流项对总涡度贡献比较小。  相似文献   

13.
2005年初夏云南严重干旱的诊断分析   总被引:6,自引:2,他引:6  
利用MM5V3.6模式对2005年4月25日一次典型的西南涡影响下的广西强降水过程进行了数值模拟与诊断分析,结果表明,在500hPa低槽、700hPa西南涡东南移的过程中,在西南涡的南端,由于对流层高层高值干位涡下传引起低层气旋性涡度增加,低涡向南伸出一低槽,使西南涡发展成“北涡南槽”形式,广西强降水出现在西南涡的南伸低槽附近。西南涡的南伸低槽附近垂直剖面上为等θe线陡立密集区,700hPa上MPV1<0,MPV2>0,低层有强烈辐合,高层有强烈辐散,从低层到高层都有上升运动。螺旋度对强降水的落区以及造成强降水的中尺度系统的发展有较好的指示性,它反映了大气的动力场特征,运用螺旋度作强降水预报还要结合水汽和不稳定条件。  相似文献   

14.
利用ERA-interim再分析资料和国家自动站观测资料,分析了四川盆地2020年8月10日~14日一次持续性强降水过程的特征及成因。结果表明:天气尺度系统的有效配合给此次暴雨过程提供了有利的环流背景,在冷空气及西南水汽的汇聚下,触发此次持续性强降水,整个过程可分为4个阶段,降水带自盆地西部向东移动;各暴雨区在强降水时刻,低层正涡度、负散度的强辐合,高层负涡度、正散度的强辐散抽吸作用均利于大气的上升运动,给持续强降水提供动力条件;相较于第二、三阶段,第一、四阶段的涡度、散度及垂直速度数值明显偏小,使得累计降水量偏少;各阶段降水过程的强降水中心、水汽辐合、上升运动区均位于中、低层低值系统(高原低涡、西南低涡、切变线)的东南侧;第二阶段降水过程中较强的水汽辐合及整层大气一致且极强的上升运动将水汽抬升输送至对流层中高层,导致该阶段累计降水量最大。   相似文献   

15.
将对流涡度矢量 (CVV) 应用于浅薄系统西南低涡引发的暴雨中,特别是将对流涡度矢量垂直分量 (Cz) 应用在2010年7月16—18日由西南涡引发的一次暴雨过程诊断中。研究了CVV垂直积分的各个分量与6 h累积降水量的关系,尤其是CVV垂直分量在西南涡暴雨过程中的指示意义。诊断结果表明:CVV垂直分量与西南涡引发的暴雨有一定对应关系,强降水发生时段与Cz垂直积分峰值出现的时间对应一致;在对流层低层850 hPa水平分布上,暴雨区位于CVV垂直分量的正值中心附近,偏向其梯度较大处;沿暴雨中心的CVV垂直分量,当对流层低层至高层呈现一致的正值时,暴雨强度会明显加强。  相似文献   

16.
东北冷涡发展过程的位涡收支分析   总被引:1,自引:0,他引:1  
吴迪  楚志刚  闫立奇 《高原气象》2015,34(1):103-112
从位涡收支的角度对一次东北冷涡发展过程进行了诊断分析,研究了位涡趋势方程中各趋势项对冷涡发展的贡献。结果表明,在对流层低层东北冷涡的发展过程中,非绝热加热率、水平平流位涡以及非平流的位涡趋势对低层位涡的增强做正贡献,有利于低层冷涡的发展,也充分说明了非绝热加热对低层冷涡的发展所起的重要作用;而垂直平流位涡刚好相反,对低层位涡的增强做负贡献,不利于低层冷涡的发展。从垂直结构看,水平平流位涡主要是在对流层低层和高层对位涡发展有正贡献;而垂直平流位涡是在中层促使位涡增强;非平流引起的位涡变化主要是在低层;由平流和非平流引起的总位涡趋势增大,促使冷涡加强发展。  相似文献   

17.
利用NCEP1°×1°再分析资料、国家气象卫星中心云顶亮温和地面加密观测资料对2013年7月21—22日发生在陕南的暴雨天气过程进行中尺度诊断分析。结果表明:中尺度对流复合体(MesoConvectiveComplex,下简称MCC)是此次暴雨的直接影响系统;500hPa停滞的低槽,配合对流层高层急流分支出口的强辐散及对流层低层西南低涡的动力抬升作用,形成有利于MCC生成、发展的大尺度环流背景;700hPa西南低空急流、850hPa气流的南支分量为MCC的生成、发展提供充足的水汽和能量;西南低涡的东北移动伴随有MCC云团的生消发展,MCC的发展经历了生成、发展、成熟、消散四个阶段,陕南强降水位于云顶亮温等值线密集一侧;MCC发生在高能、弱对流不稳定区;露点锋加强暴雨区的垂直上升运动,系统北部冷空气与南侧西南暖湿气流导致低层锋生,大气斜压性增大,并在陕南地区产生辐合上升,形成次级环流,又触发对流不稳定释放,相互之间有正反馈的作用。  相似文献   

18.
位涡诊断在云南夏季强降水预报中的应用   总被引:22,自引:13,他引:9  
范可  琚建华 《高原气象》2004,23(3):387-393
通过对云南夏季常见的"滇黔辐合型"强降水的个例分析,探讨位涡诊断在低纬高原的应用前景。发现干、湿位涡能较好地反映天气系统的演变特征,干位涡能反映冷空气活动的路径和暖湿气流的活动。高层干位涡具有向对流层低层延伸和低层干位涡具有向上伸展的特点,当高层干冷空气与低层的暖湿气流汇合,加上低层低涡切变的辐合机制,产生强烈的上升运动,这种形势极有利于对流不稳定能量的储存和释放,造成强降水。当高、低层干位涡减弱,两者相互作用减弱时,降水趋于结束。云南夏季常见的"滇黔辐合型"强降水过程的干位涡场表现在对流层中低层,高低纬呈现南北向或东北西南向高值带,当PV高值带断裂时,云南省强降水过程趋于结束。对流层低层湿位涡MPV1较PV能更好地反映对流层低层西南涡的移动和发展,在云南强降水过程中,700hPa上MPV1<0,MPV2>0。  相似文献   

19.
登陆台风等熵面位涡演变的数值模拟研究   总被引:3,自引:1,他引:2  
季亮  费建芳 《气象》2009,35(3):66-72
选取1997年第11号台风温妮为研究个例,通过中尺度模式MM5模拟再现了该台风登陆后经历初期减弱、变性及变性后再次发展的演变过程.引入Ertel等熵面位涡收支方程,深入分析了登陆台风结构演变的过程中绝热与非绝热作用对对流层低层位涡局地变化的影响.研究表明:台风温妮深入内陆的过程中,对流层低层台风中心西北侧位涡增长,且大值中心不再与台风中心重合;由于摩擦和非绝热加热的存在,对流层低层位涡不守恒,其局地变化主要决定于位涡的水平平流(守恒项)、位涡的垂直平流、加热的垂直微分(非守恒项)的分布;台风温妮变性前后,对流层低层位涡的守恒性逐渐减弱,非守恒项尤其是加热的垂直微分对位涡的局地增长的正贡献不断增强直至占有主导地位.  相似文献   

20.
“7.20”华北特大暴雨过程中低涡发展演变机制研究   总被引:22,自引:1,他引:21       下载免费PDF全文
利用中国地面加密自动站观测资料、北京地区雷达探测资料、NCEP (1°×1°) FNL资料、ECMWF ERA Interim (0.125°×0.125°)逐日再分析资料等,对造成2016年7月19-20日华北极端暴雨中的低涡系统发展演变的结构特征和加强机制进行了研究。华北地区这次特大暴雨过程出现了3个阶段降水,其中与低涡系统强烈发展对应的第2阶段降水是本次华北暴雨过程的主要降水阶段。针对该低涡的分析表明:(1)850 hPa以西南低涡为中心的低压带中,在河南西北部新生低涡系统,并且其在向华北地区移动过程中显著加强,该低涡系统在空间结构上,从倾斜涡柱逐渐发展成近乎直立的、贯穿整个对流层的深厚低涡系统;(2)中低层低涡系统快速发展过程与高低空系统构成耦合作用有关:低层低涡系统显著加强之前,对流层上层(300-200 hPa)首先出现高空槽异常加深并向南发展,该高空槽发展的开始阶段与其本身冷暖平流造成的斜压发展过程对应;而后,随着高纬度平流层高位涡沿等熵面向南运动,造成华北地区对流层上层涡度增强,形成正位涡异常区;当这一正位涡异常区叠加在对流层中低层锋区上空时,造成对流层中低层气旋快速发展并向下伸展,诱发河南西北部的新生气旋;低涡系统的发展进一步强化了低空暖平流,促使低空气旋向东北方向发展"移动"(本质上是暖平流前端造成的气旋发展),这一动力学过程反过来使高层的涡度增强;这一正反馈过程形成的耦合环流不仅造成了整个涡度柱强度增强,而且垂直结构上逐渐由倾斜涡柱演变为近乎于直立的涡柱;(3)随着低涡系统增强,极大地加强了垂直上升运动并触发了对流,形成大范围的强降水,大量的凝结潜热释放,造成了低层低涡系统在强降水开始阶段的快速发展和增强;20日00时(世界时)以后,虽然对流活动显著减弱,但低涡系统的加深维持了大范围强降水过程的持续。强降水与低涡发展的正反馈过程是这次华北暴雨得以长时间维持的重要机制之一,这一过程形成的持续性潜热释放也是对流层中上层低涡系统热力结构发生改变的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号