首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
基于ISCCP观测的云量全球分布及其在NCEP再分析场中的指示   总被引:12,自引:1,他引:11  
刘奇  傅云飞  冯沙 《气象学报》2010,68(5):689-704
国际卫星云气候计划(ISCCP)已经积累了20多年的持续云观测资料,提供了迄今为止最具权威的全球尺度云量信息,为全面认识全球尺度云气候特征提供了有利条件.利用长期稳定的ISCCP D2云量资料,文中系统地分析了全球尺度总云量以及高、中、低云云量的空间分布特征.结果表明,全球总云量均值为66.5(单位:%),其中洋面71.6.陆面55.9.全球云量分布极不均衡,且海陆差异显著,洋面局部云量最高可达90,而包括南极大陆在内的所有陆面区域多为云量低值中心.高云和低云全球分布形式存在明显差异,其中陆面以高云为主,洋面低云相对较多.低云集中分布于太平洋东南部和东北部的近海岸地区以及南半球洋面,热带辐合带、南太平洋辐合带等大尺度强对流活动区内高云数量占优势.特别,在气候平均态上分离低云和高云区,并结合对NCEP再分析资料所提供环流背景场的分析,研究发现两类云所对应的垂直和水平风场具有明显的差异.高云区从低空到对流层顶为一致的强下降运动,低云区的中高层被上升气流所控制但近地面一般存在弱的上升运动.反映在水平辐散场上,两类云对应的辐散度在垂直方向上变化趋势相反,其中低云对应的典型背景场为低层辐散高空辐合.进一步考虑水汽因素,600与850 hPa水汽通量散度差对低云(负差异)和高云(正差异)的云量空间分布有较好的指示意义.  相似文献   

2.
近二十年全球变暖背景下东亚地区云量变化特征分析   总被引:8,自引:0,他引:8  
吴涧  刘佳 《热带气象学报》2011,27(4):551-559
利用ISCCP的D2云气候资料集,采用趋势分析方法得到了东亚地区1984—2006年各种不同种类云量的变化趋势,并重点分析了全球变暖背景下气温与不同云量变化之间的关系。结果表明:近20年东亚地区总云量和高、低云量呈现波动减少趋势,减少量分别为2.24%、1.65%和1.68%,中云量呈增加趋势,增加量为1.07%;且云量变化存在较大的区域差异。温室效应所导致的东亚地区气温改变和水汽含量变化,是导致云量分布变化的重要原因,在青藏高原、孟加拉湾及热带辐合带区域的气温与高云存在显著负相关,与中、低云存在正相关,而在西太平洋、日本以东以北洋面的气温与低云呈显著负相关,与高云呈正相关。  相似文献   

3.
文章利用ISCCP月平均云气候资料集的总云量数据,分析了总云量在全球的时空分布,并对四季云量分布进行对比;采用趋势分析和旋转经验正交函数分解的方法,比较了1983—2009年全球平均总云量的变化趋势,结果显示:27a以来全球云量总体呈现减少趋势,尤其是赤道太平洋地区最明显,高纬度地区云量略有增加。云量低值中心位于南北回归线附近,赤道辐合带有一云量高值中心。总体而言,南半球云量多于北半球,洋面云量多于陆面;春夏两季云量多于秋冬两季。  相似文献   

4.
内蒙古地区云量时空分布及变化趋势分析   总被引:3,自引:2,他引:1  
利用1983年7月至2001年9月ISCCP云气候资料集D2资料集内蒙古区域云资料和内蒙古地区117个地面观测站的多年月平均气温、降水资料,采用趋势分析方法分析了内蒙古地区总云量和高、中、低云量的时空分布和多年变化趋势,以及温度和降水的多年变化趋势。结果表明:内蒙古地区总云量、低云量、中云量呈白西向东逐渐增多,高云量自西南向东北逐渐减少的空间分布特征;19年来东部地区总云量呈增加趋势,中、西部地区总云量呈减少趋势,温度的升高可能是云量变化的原因之一,内蒙古东北部云量和降水量变化趋势一致。  相似文献   

5.
南海及周边地区云量分布及低云量与南海海温的关系   总被引:3,自引:1,他引:2  
张亚洲 《气象科学》2012,32(3):260-268
利用国际卫星云气候计划提供的月平均云气候资料集,分析了南海及周边地区云量的分布特征,并进一步研究了低云量与南海海温的关系。结果表明:(1)南海及周边地区总云量分布存在显著的季节性差异特征。(2)低云主要分布在南海海区,中云为华南地区,而高云则主要位于靠近赤道区域。(3)低云受海表温度影响较大,而中高云则主要与强对流相对应。低云主要分布于南海海表冷水中心南侧的暖水区内的温度梯度区,其高值区分布与海表温度梯度分布基本一致,海表温度梯度的大小与高值中心的低云量成正比。(4)低云量高值中心位置与水平海温梯度区两侧基本一致,高温暖水受西边界强迫上升在海表层辐合,有利于低云的生成。  相似文献   

6.
利用2001年1月至2015年12月Aqua/CERES卫星产品SYN云量资料,采用趋势分析法、小波分析法分析近15 a我国总云量及中低云、中高云和高云的气候场特征及其与气象要素的相关性。结果表明:总云量整体由东南向西北带状递减,最高值位于西南地区,可达80%以上,最低值位于塔里木盆地及蒙古高原西部地区,可低于30%。高云的高值区主要集中在高海拔区域,中高云分布与高云类似,中低云与总云量分布类似。除中低云外,总云量及不同高度的云量均在夏季达到最高值,且其区域特性显著。近15 a来总云量年际变化整体呈下降趋势,趋势系数为-0. 15%·a-1,主要受较低层云量减少的影响,高云则呈现一定的增加趋势。青藏高原上空不同高度云量变化趋势较其他地区显著,并以减少趋势为主。不同高度的云量季节变化差异较大,总云量在春季和冬季变化较大,高云、中高云的季节变化较小,中低云在春季和夏季变化较大。不同高度的云量均存在2~3 a较短的震荡周期。不同类型云量均受到相对湿度的影响,近期地表温度的增加与高云增加、低云减少相关,高云与降水的相关性更高。  相似文献   

7.
为了解内蒙古地区云的特征,利用1983年7月至2001年9月的ISCCP的云气候资料集中的D2资料集中内蒙古区域部分、内蒙古东部地区48个地面观测站自建站的月平均气温资料,采用趋势分析方法研究分析了内蒙古地区总云量、高、中、低云量的时空分布和多年的变化趋势。结果表明:内蒙古地区总云量、低云量、中云量呈自西向东依次增多,高云量自西南向东北依次减少的空间分布特征;19年来东部地区总云量呈增加的趋势,中、西部地区呈减少的趋势,并且,分析表明温度的变化可能是云量变化的原因之一。  相似文献   

8.
热带地区云量日变化的气候特征   总被引:3,自引:0,他引:3  
利用国际卫星云气候计划(ISCCP)1984—2003年共20年云量资料,统计分析了热带地区的云量日变化特征,研究结果表明,云量峰值时间和变化幅度在全球的分布都较为均匀,而海陆差异明显。高云和低云在变化机制上相对独立,其云量日变化并非同步。全球云量日变化由4类基本形式组成,分别为洋面高云型、陆面高云型、洋面低云型和陆面低云型。高云日变化与地表辐射加热状况密切相关,其形式在洋面和陆面类似,均为早晨出现云量最小值而午后到达云量峰值。相比于洋面,陆面高云的峰值在夜间持续时间较长,可发展至更为稳定深厚的云系。低云多在局地5时附近出现云量峰值,18时左右达到云量极小值,其中陆面低云在12时出现第二峰值。  相似文献   

9.
云变化迅速且类型复杂,获取准确的云观测信息具有一定挑战。本文使用2001-2010年期间南部大平原的大气辐射观测实验数据,定量评估了探空和地基主动遥感观测六种类型云(低云、中低云、高中低云、中云、高中云、高云)的一致性和差异。尽管探空和地基观测六类云的云量变化趋势相近,但是针对不同类型云,两者探测结果存在一定差异,其中高云差异最大。两者对中低云、中云和高中云的云底高度的观测吻合较好,对中低云和高云的云顶高度的观测差异较大,对所有类型云的云厚度的观测均吻合较好。  相似文献   

10.
利用2021年3月—2022年2月ERA5再分析数据云量、云水凝物对中国气象局研发的全球数值预报系统CMA-GFS同期云量产品和由云量、云水凝物产品计算的云发生、云水凝物积分的偏差特征进行诊断评估, 初步探讨了CMA-GFS云预报偏差存在的可能原因。结果显示:CMA-GFS云量、云水凝物的分布较为合理, CMA-GFS能够描绘全球云量、云水凝物的分布特征, 并能够反映季节特征;CMA-GFS预报高云和中云的云量偏差大于低云的云量偏差, 而高云和中云的云量均方根误差较低云偏小, 说明模式高云和中云的预报稳定性优于低云;与ERA5再分析数据相比, CMA-GFS液相水凝物积分以负偏差为主, 冰相水凝物积分以正偏差为主;云量、云水凝物的偏差在不同地区成因不同, 在热带地区的偏差与对流参数化和微物理方案不协调有关, 在南北半球中高纬度地区的偏差与相对湿度偏差相关。  相似文献   

11.
滇南冰雹的预报预警方法研究   总被引:7,自引:2,他引:5  
段鹤  严华生  马学文  罗庆仙  刘建平 《气象》2014,40(2):174-185
利用普洱市探空资料、CIND3830-CC新一代天气雷达资料、地面观测资料,对2004—2011年滇南普洱、西双版纳冰雹天气过程进行统计分析,总结出冰雹4个预报指标:(1)当单体回波满足冰雹云的初始特征和发展阶段特征时,可预报未来出现冰雹的可能较大,预报提前60 min以内;(2)当回波的组合反射率≥55 dBz、宽度≥12.0 km、梯度≥15 dBz·km~(-1)、H_(45 dBz)≥7.5 km、2—5月H_(45 dBz)-H_0≥3.1 km且H_(45 dBz)-H_(-20)≥-0.5 km、6-8月H_(45 dBz)-H_0≥2.0 km且H_(45 dBz)-H_(-20)≥-1.2km、VIL≥30 kg·m~(-2)、D_(VIL)≥3.0 g·m~(-3)时,预报有冰雹发生,预报提前12~102 min;(3)当回波具有弱切变特征、45 dBz回波顶高≥7.5 km、2—5月H_(45 dBz)-H_0≥3.1 km且H_(45 dBz)-H_(-20)≥-0.5 km、6—8月H_(45 dBz)-H_0≥2.0 km且H_(45 dBz)-H_(-20)≥-1.2 km时,可预报有冰雹出现,预报提前18~54 min;(4)若除去飑线和下击暴流回波,当回波的VIL≥30 kg·m~(-2)、D_(VIL)≥3.0 g·m~(-3)时,可预报有冰雹出现,预报提前12~54 min。此外,还总结了冰雹云的生命期特征等,并利用2012年发生的冰雹天气过程检验了预报指标。  相似文献   

12.
采用20世纪再分析版本2c数据集的云水量逐月再分析数据,通过数理统计方法,分析了1960~2014年全球、海洋和陆地上空云水量的分布和变化特征及其与水汽通量的关系。结果表明:1)全球云水量空间分布不均,海洋高于陆地且比例约为4﹕3,中低纬海洋、陆地上空云水量变化趋势分别为0.07 g m?2 (10 a)?1和?0.04 g m?2 (10 a)?1,季节性差异主要体现于夏季在热带辐合带和南半球海洋高,冬季在北半球海洋和南半球陆地高。2)对比六大洲发现,云水量最高的南美洲有最快增加趋势,为0.46 g m?2 (10 a)?1,同时云水量最低的非洲有最快降低趋势,为?0.59 g m?2 (10 a)?1。3)中低层整层水汽通量散度场的辐合、辐散区和云水量的高、低值区相对应,云水量与水汽通量散度变化呈负相关(相关系数为?0.44),负相关关系在赤道附近的低纬地区显著。本文揭示了在全球变暖背景下,大气中云水量分布和变化的时空格局,为模式参数化和未来气候预估提供参考。  相似文献   

13.
平流层火山气溶胶时空传播规律及其气候效应   总被引:2,自引:1,他引:1       下载免费PDF全文
根据平流层火山气溶胶传播规律研究,该文构建了反映火山喷发强度、平流层火山气溶胶相对浓度、火山气溶胶扩散速率和反映火山爆发地理位置并且按e指数规律衰减的火山活动指数(VEI)时空分布函数,进一步建立了北半球中高纬度、南北半球低纬度和南半球中高纬度3个1945-2008年逐月火山活动指数时间序列。根据3个逐月火山活动指数时间序列分别分析了北半球中高纬度、南北半球低纬度和南半球中高纬度火山活动对于相应纬度带地面气温的影响。研究表明:无论南北半球还是热带,火山活动强时地面气温下降,火山活动弱时地面气温上升,并且地面气温对于火山活动的响应明显滞后。  相似文献   

14.
南半球环流与西太平洋副热带高压和台风群中期活动的关系   总被引:12,自引:2,他引:10  
通过对南北半球环流6年资料的分析,发现在北半球夏季5~8月,南半球中纬西风指数、低纬西风指数、赤道气压指标与北半球西太平洋副热带高压和台风群的中期活动均有较好的关系。在台风群活跃的年份,台风群生成阶段前后,环流变化由南半球中纬先开始,随后南半球低纬和赤道地区环流也出现变化,赤道气压指标到达低值,此后,北半球西太平洋副热带高压的特征产生一系列的变化,上述南北半球环流系统变化的传播过程为准二周周期。  相似文献   

15.
大气能量学是大气科学重要的组成部分,了解大气能量的时空分布和变化特征,能够为大气科学研究,尤其是气候变化研究提供新的思路和手段。本文基于1948~2016年NCEP逐月再分析资料,从大气的总能量及其内能、位能、潜热和动能的分布、变化趋势和主模态变化等方面阐释了全球大气能量变化的整体特征。主要结论如下:(1)除高海拔地区外,总能量呈现从赤道向两极逐渐递减的分布,且全球大部分地区呈增加趋势,内能和位能的分布和变化与总能量较为接近;潜热能的极大值区和显著变化区均位于赤道及低纬地区;动能的极大值区分布在中纬度长波槽和西风急流出口区,其在南半球双西风急流区的变化最为显著。(2)总能量呈现出不连续的阶段性跳跃式增长特征;北半球的总能量多于南半球,而增速却慢于南半球,即两半球间的能量呈趋同趋势;海洋上空的总能量多于陆地,且海陆间差额有增大趋势;火山爆发事件可能对大气能量在年际尺度上的减少有重要作用。(3)大气各能量第一模态的空间特征与其各自变化趋势分布非常相似,并先后在1975年左右发生了年代际突变。就第二模态而言,大气的总能量、内能和位能从整体上反映出南北极与其它地区呈反向变化的特征;部分低纬度地区的潜热能与其它地区呈反向变化;动能主要呈现从热带太平洋向南北两极的经向波列分布;它们的时间系数均有一定的多年代际变化特征,可能与气候系统的内部变率有关。  相似文献   

16.
The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events. The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation, with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.  相似文献   

17.
为了定量评估北京气候中心(BCC)发展的BCC_CSM对当代全球海表温度和混合层深度的模拟能力,以WOA09(World Ocean Atlas 2009)观测资料作为检验模式的气候态实况场,提取包括BCC_CSM在内的CMIP5中的17个海气耦合模式的模拟结果,评估BCC_CSM模拟的全球海表温度和混合层深度的气候平均态并分析造成偏差的可能原因。结果表明:BCC_CSM模拟的海表温度在北半球中高纬的误差较大,而在其余纬度的模拟性能较佳。偏差的产生主要归因于海洋环流偏差。BCC_CSM模拟的最深混合层在北半球中高纬和南半球高纬地区的误差较大,同时这些区域也是多模式模拟差异最大的区域;其模拟的最浅混合层在南半球中高纬的偏差较大。冬季大西洋经向翻转环流的模拟在北大西洋下沉的位置偏南导致北半球高纬地区海表温度偏冷。由此认为包括BCC_CSM在内的许多海气耦合模式需重点改进对南、北半球深对流海域物理过程的描述,以提高气候预测的可信度。  相似文献   

18.
30—60天大气振荡的全球特征   总被引:14,自引:6,他引:14       下载免费PDF全文
李崇银 《大气科学》1991,15(3):66-76
利用ECMWF格点资料,分析研究了大气季节内(30—60天)振荡的全球特征。30—60天振荡动能的分布表明高纬度地区要比赤道地区大得多。说明那里有较突出的30—60天振荡。中高纬度地区的30—60天振荡与热带有明显不同,垂直结构为正压模态,以纬向2—4波为主,多为向酉传播。30—60天振荡存在明显的低频遥相关,北半球主要为欧亚—太平洋(EAP)型和PNA型,南半球主要有澳洲—南非(ASA)型和环南美(RSA)型,并且在全球范围构成南北半球相互衔接的低频波列,即EAP-ASA波列和PNA-RSA波列。南北半球30—60天大气振荡有明显的相互影响,本文研究了南北半球30—60天振荡相互影响的3种主要过程。  相似文献   

19.
A survey is made of the published estimates of the components of the poleward flux of energy by the atmosphere in the Southern Hemisphere in order to determine the total atmospheric transport. Together with recent measurements by satellite of the Earth's radiation budget this allows a new estimate of the required poleward energy transport by the oceans in the Southern Hemisphere for mean annual conditions. Results show that the ocean and atmosphere each contribute similar amounts for 0–30°S and that the ocean probably also transports about one third of the total at 60°S. The latter is in contrast to similar latitudes in the Northern Hemisphere where the ocean transport is negligible, but consistent with the different distribution of land and sea in the two hemispheres.  相似文献   

20.
ABSTRACT The spatial and temporal global distribution of deep clouds was analyzed using a four-year dataset (2007-10) based on observations from CloudSat and CALIPSO. Results showed that in the Northern Hemisphere, the number of deep cloud systems (DCS) reached a maximum in summer and a minimum in winter. Seasonal variations in the number of DCS varied zonally in the Southern Hemisphere. DCS occurred most frequently over central Africa, the northern parts of South America and Australia, and Tibet. The mean cloud-top height of deep cloud cores (TDCC) decreased toward high latitudes in all seasons. DCS with the highest TDCC and deepest cores occurred over east and south Asian monsoon regions, west-central Africa and northern South America. The width of DCS (WDCS) increased toward high latitudes in all seasons. In general, DCS were more developed in the horizontal than in the vertical direction over high latitudes and vice versa over lower lat- itudes. Findings from this study show that different mechanisms are behind the development of DCS at different latitudes. Most DCS at low latitudes are deep convective clouds which are highly developed in the vertical direction but cover a rela tively small area in the horizontal direction; these DCS have the highest TDCC and smallest WDCS. The DCS at midlatitudes are more likely to be caused by cyclones, so they have less vertical development than DCS at low latitudes. DCS at high latitudes are mainly generated by large frontal systems, so they have the largest WDCS and the smallest TDCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号