首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jurassic strata are widespread through Arctic Siberia and host oil and gas fields. However, in most cases, the geology of such vast areas still remains unexplored, and study of the Jurassic stratigraphy and reconstructions of geologic history are possible only through analysis of sediment cores. In this connection, there is a clear need for detailed studies of microfaunas (foraminifera, ostracods) and palynomorphs (dinocysts, spores, and pollen). The studied reference section of the Upper Jurassic and Lower Cretaceous is located on the left side of Anabar Bay of the Laptev Sea (Nordvik Peninsula, Cape Urdyuk-Khaya). An uninterrupted and continuous section from the Upper Oxfordian to the Lower Valanginian is exposed in coastal cliffs and consists mainly of silty clay deposits with abundant macro- and microfossils. Integrated field studies (biostratigraphy, lithostratigraphy, sedimentology) allow a more detailed characterization of the regional geologic framework. A detailed subdivision of the section is based on the systematic composition of ammonites from Upper Oxfordian and Kimmeridgian deposits. Several foraminiferal zones of the Upper Oxfordian and Lower Volgian are defined, and some of them are denfined for the first time. The distribution of ostracods in the section is analyzed for the first time. The section is also studied using palynological analysis, that results in its detailed subdivision on palynological data and recognition of two sequences of palynostratigraphic units. The integrated stratigraphy is used to establish the precise position of stage and substage boundaries. The continuity of the section is defined based on micropaleontological and palynological data.  相似文献   

2.
The analysis of Upper Jurassic and Lower Cretaceous marine sections developed in surrounding structures of the Laptev Sea revealed that all of them are composed of terrigenous rocks, which enclose abundant concretions cemented by calcareous material. The Upper Jurassic portion of the section is the most variable in thickness and stratigraphic range of sediments usually including hiatuses. Its Lower Cretaceous part represented by the Boreal Berriasian (=Ryazanian) and lower Valanginian stages is most complete. The Upper Jurassic and Lower Cretaceous sections are usually composed of fine-grained rocks (clays and mudstones) in the west and coarser cemented varieties (siltstones and sandstones) with rare mudstone intercalations in the east. Practically all the investigated Upper Jurassic and Lower Cretaceous sections include readily recognizable age and facies analogs of the Bazhenovo Formation and Achimov sandstones, which are petroliferous in West Siberia. There are grounds to assume the occurrence of these formations also on the Laptev Sea shelf, which is confirmed by seismic records. Conditions favorable for the formation of potential hydrocarbon reservoirs could exist in the western part of the paleobasin along the Nordvik Peninsula coast and northeastern Tamyr Peninsula margin. Paleotectonic reconstructions presented in this work are well consistent with stratigraphic conclusions.  相似文献   

3.
Recent integrated studies of Mesozoic reference sections of the Anabar area (northern Middle Siberia, Laptev Sea coast) and the reinterpretation of all the previous data on a modern stratigraphic basis permit considerable improvement of the bio- and lithostratigraphic division and facies zoning of Jurassic and Cretaceous sediments in the region. Analysis of abundant paleontological data allows the development or considerable improvement of zonal scales for ammonites, belemnites, bivalves, foraminifers, ostracods, dinocysts, and terrestrial palynomorphs from several Jurassic and Cretaceous intervals. All the zonal scales have been calibrated against one another and against regional ammonite scale. Reference levels of different scales useful for interregional correlation have been defined and substantiated based on the analysis of lateral distribution of fossils in different regions of the Northern Hemisphere. It provides the possibilities to propose and consider parallel zonal scales within the Boreal zonal standard for the Jurassic and Cretaceous periods. A combination of these scales forms an integrated biostratigraphic basis for a detailed division of Boreal-type sediments regardless of the place of their formation and for the comparison with the international stratigraphic standard as far as a possible use of a set of reference levels for correlation.  相似文献   

4.
川北广元须家河组一段沉积相与沉积环境演化分析   总被引:2,自引:2,他引:0  
四川盆地北部三叠系—侏罗纪发育,出露良好,是三叠纪—侏罗纪转换时期古气候与古环境变化的良好物质记录。其中,晚三叠世诺利期是四川盆地海陆转换的重要过渡期,尤其是对陆地生态系统的影响更加显著。以川北广元剖面为研究对象,对晚三叠世诺利期末须家河组须一段进行沉积相及沉积环境演化的分析,结果表明:研究剖面发育潟湖沼泽—三角洲平原—辫状河流亚相沉积,为海陆过渡相—陆相沉积体系;受甘孜—阿坝弧后盆地发育影响,始自卡尼期的海侵自诺利中后期到达广元地区;在秦岭造山带及龙门山的隆升背景下,广元地区较早结束海陆过渡相沉积,于须一段中后期向河流相沉积转变。结合对古生物化石组合研究和岩性特征及沉积相,恢复了广元地区晚三叠世诺利期须一段的古气候特征,广元地区须一段处于近海亚热带潮湿气候,这种潮湿气候从须一段一直延续至诺利期末期。  相似文献   

5.
The model of geological structure of sedimentary cover of the Laptev Sea accepted by most geologists suggests that the lower seismic complex of the cover begins by the Aptian–Albian sedimentary rocks. They can be studied in natural outcrops of Kotelnyi Island. The section of the Tuor-Yuryakh Trough, which exposes the lower part of the Cretaceous complex, is described in the paper. It is composed of continental coaliferous rocks ~100 m thick. The marking beds divide it into five members, which are traced along the western wall of the trough at the distance up to 3 km. The spore–pollen complexes and plant megafossils indicate that almost the entire visible section of the mid-Cretaceous is Albian. Only its lower part no more than 14 m thick can probably belong to the Aptian. Marine facies with Albian foraminifers were found 15 m above the bottom of the Cretaceous complex. The section of the Cretaceous rocks is underlain by the Lower Jurassic marine clays and siltstones. The foraminifer assemblages of this part of the section are typical of the upper Sinemurian–Pliensbachian and fossil bivalves indicate late Sinemurian age of the host rocks. The hiatus ~70 Ma duration has no expression in the section and this boundary can de facto be substantiated only by microfossils. This vague contact between the Lower Jurassic and mid-Cretaceous rocks does not correspond to geophysical characteristics of the bottom of the lower seismic complex of the cover of the eastern part of the Laptev Sea. The latter is described as the most evident seismic horizon of the section of the cover, suggesting unconformable occurrence of the lower seismic complex on a peneplenized surface of lithified and dislocated rocks. This is mostly similar to the bottom of the Eocene sediments, which were observed on Belkovsky and Kotelnyi islands. The paper discusses possible application of our land results for interpretation of the shelf seismic sections of the Laptev Sea. It is concluded that local reasons are responsible for a vague boundary between the Lower Jurassic and mid-Cretaceous sequences in the section studied. Our observations support ideas on possible Aptian–Albian age of the rocks of the basement of the lower seismic complex; however, it is proposed to use also the previously popular idea on the Eocene age of the lower seismic complex of sedimentary cover of the eastern part of the Laptev Sea as one of the possible working scenarios.  相似文献   

6.
准噶尔盆地中生代演化的地层学和沉积学证据   总被引:9,自引:0,他引:9  
准噶尔盆地是一个构造演化复杂、由多个含油气凹陷构成的盆地。根据盆地中生界地层发育特征、地震资料及前人研究成果,探讨了准噶尔盆地中生代的沉积特征、沉积范围、沉积中心迁移特征及断裂对沉积的控制作用,将中生代准噶尔盆地划分为三叠纪—侏罗纪断—拗盆地和白垩纪陆内坳陷盆地两个发育阶段,其中晚侏罗世—早白垩世早期可能是盆地由张性背景向挤压背景转化的重要时期。  相似文献   

7.
A detailed analysis of organic matter from the Oxfordian-Lower Valanginian interval of the Nordvik section (Anabar Bay) allows the definition of three geochemical horizons (terpane, diasterene, and hopane), which are characterized by specific geochemical compounds and their ratios. These horizons are correlated with several stages in the evolution of microfossils associated with ecological and geochemical changes in sea paleobasin. Our study shows a good correlation among the variation in many geochemical parameters, the composition of microfossil assemblages, and the transgressive-regressive phases of the paleobasin evolution. Moderately shallow-water facies was reconstructed using micropaleontological, palynological, and lithological data from the upper and lower parts of the section, where the terpane and hopane horizons were identified. Both horizons are characterized by a general dominance of hopanes over other polycyclic biomarkers, the presence of compounds with the biological configuration and organic matter of mixed terrestrial-marine origin, the presence of benzohopanes and retene, an indicator of the conifer resins. This is also reflected in the composition of palynological assemblages, which are dominated by terrestrial palynomorphs, with rare conifer pollen grains. Relatively deep-water facies were identified in the middle part of the section (diasterene horizon). A distinctive geochemical feature of this interval is high relative abundances of diasterenes and 4-methyldiasterenes. The lower subhorizon is characterized by the highest values of the pristane/n-C17 ratio and relatively light δ13C values of noncarbonate carbon. The aromatic fractions have anomalously high concentrations of methyltrimethyltridecylchromans (MTTCs), which are interpreted to be derived mostly from chlorophyll of prasinophytes. The terpenoid distribution is marked by the presence of neohop-13(18)-enes, which probably originated from the activity of methanotrophic bacteria. The above geochemical parameters indicate high photic zone productivity (which is confirmed by the composition of palynological assemblages with abundant dinocysts and prasinophytes) that favored the accumulation of organic matter in dysaerobic conditions, which periodically occurred in the bottom of paleobasin. The alternation of dysaerobic and low-oxic bottom water conditions is easily reconstructed from the analysis of microbenthic communities. The analysis of biogeochemical, micropaleontological, paleontological, and palynological data on the Upper Volgian-lowermost Berriasian organic-rich shales revealed a very good source rock potential for this part of the section, as indicated by relatively high concentrations of organic matter of mixed bacterial-algal genesis and stagnant conditions during deposition and diagenesis. However, this potential was not realized because of the extremely “mild” thermobaric conditions that existed within the Mesozoic strata of the present-day Anabar Bay. At the same time, our results and analysis of the available data allow an optimistic assessment of the hydrocarbon potential of Jurassic-Lower Cretaceous deposits on the Laptev Sea shelf.  相似文献   

8.
中国东南海域中生代地处欧亚板块东南缘, 夹持于欧亚板块、太平洋板块与印度澳大利亚板块之间。以往对于该区域的油气勘探多集中于新生代。笔者在前人研究的基础之上, 结合新近获得的地震资料, 开展了中国东南海域及周缘油气地质条件研究。结果表明:中国东南海域中生界分布广, 东海南部、台湾岛以及台西南盆地发育中生界深海相硅质岩, 可能与冲绳缝合带和菲律宾巴拉望缝合带形成有关;南海北部及周缘陆区发育上三叠统下侏罗统海相和海陆交互相碎屑岩及上侏罗统白垩系陆相碎屑岩, 可能与印支期缝合带的形成有关。从海域钻井及周缘陆区沉积层序资料推断, 中国东南海域有两套发育良好的烃源岩, 具有较强的生烃潜力:上三叠统下侏罗统海相泥页岩, 有机碳质量分数为0.28%~14.96%, 干酪根类型主要以Ⅱ2型和Ⅲ型为主;下白垩统海相泥页岩, 有机碳质量分数为0.60%~2.00%, 干酪根类型以偏Ⅱ2Ⅲ型为主。该海域发育两套生储盖组合:一套以上三叠统下侏罗统泥页岩为烃源岩, 中、上侏罗统砂岩为储层, 下白垩统泥页岩为盖层;另一套以下白垩统泥页岩为烃源岩, 白垩系砂岩为储层, 上白垩统泥页岩为盖层。它们相互可以形成"古生新储"、"自生自储"油气藏组合。因此, 中国东南海域中生界是值得关注的油气勘探新领域。  相似文献   

9.
Lithofacies of the productive Upper Triassic-Lower Jurassic deposits of the Eastern Caspian region, studied in wells on the Caspian coast and exposed in the outcrops of the Mountainous Mangyshlak, are described and analyzed. The similarity of the structure of the Mesozoic sedimentary beds of the Middle Caspian Basin and of those of the land adjacent to its eastern coast is confirmed. Comparative analysis of lithofacies allowed the reconstruction of the paleogeographic setting and depositional environments in the studied region during the Early Jurassic. A unique fossil plant occurrence is discovered in the upper part of the Lower Jurassic series (in the lower subformation of the Kokala Formation; Eastern Caspian region). Fossil plant taphonomy and the lithology of host rocks in the occurrence resulted from unusual paleogeographic settings that existed in the Middle Caspian Basin at the time of the Early-Middle Jurassic boundary.  相似文献   

10.
准噶尔盆地南缘侏罗纪沉积相演化与盆地格局   总被引:28,自引:4,他引:24       下载免费PDF全文
通过对准噶尔盆地南缘侏罗系5条剖面的沉积特征对比,结合钻井资料和地震资料,确定了准噶尔盆地南缘侏罗纪盆地边界、沉积相演化及盆地格局。头屯河剖面和后峡剖面的沉积相对比及古流向测量表明二者在早、中侏罗世形成于同一沉积体系。在早、中侏罗世,沉积相逐渐从以辫状河-三角洲-湖泊相为主过渡到以河流相-湖泊相为主,沉积水体逐渐变浅;其中三工河组沉积时期盆地沉积范围达到最大,西山窑组沼泽相发育,车排子-莫索湾凸起自西山窑组沉积时期开始形成;早、中侏罗世的盆地边界至少位于后峡以南附近,此时不存在地理分割明显的天山山脉。晚侏罗世-早白垩世早期,沉积相从辫状河-滨浅湖相为主迅速演变为以辫状河-冲积扇相为主。在此期间盆地边界明显向北迁移,天山山脉明显隆升并造就天山南北沉积环境的巨大差异,博格达山构成盆地南缘的又一重要物源体系。  相似文献   

11.
The Tarim basin, which is located in the Xin-jiang Autonomous Region in western China , is alarge-scale superi mposed basin situated between theTianshan Mountains to the north and the KunlunMountains to the south, with an area of 560 000km2. The Tazhong uplift ,locatedin the central partof the basin, has an area of 30 000 km2.It is sur-rounded by the Manjiaer depressionin the north,theTangguzibasi depressionin the south,the Bachu up-lift inthe west andthe Tadong saginthe east .It hasbeco…  相似文献   

12.
柴达木盆地北缘侏罗系层序地层与沉积相研究   总被引:18,自引:3,他引:15  
杨永泰  张宝民  李伟  瞿辉 《地学前缘》2000,7(3):145-151
依据钻井、露头的生物地层研究成果 ,特别是以冷科 1井的生物地层标定为基础 ,应用层序地层学理论对柴北缘覆盖区侏罗系进行了地震地层的追踪对比与地震相、沉积相研究 ,并探讨了层序格架内烃源岩、储层的发育特征。其结果表明 ,柴北缘侏罗系可划分为 5个层序、11个体系域。其中 ,下侏罗统可划分为两个层序 ,沉积相均以扇三角洲与半深湖—深湖相为特征 ;中侏罗统为一个层序 ,沉积相主体为河流、沼泽相 ,仅该层序顶部发育浅湖—半深湖相 ;上侏罗统为两个层序 ,沉积相以氧化宽浅湖、三角洲、河流为特征。烃源岩发育于中下侏罗统中。而侏罗系砂体分布广泛 ,可构成天然气的优质储层 ,部分可构成原油的良好储层  相似文献   

13.
Variations in sediment input and distribution to the Laptev Sea continental margin during the Holocene and Termination I could be identified based on radiocarbon dated magnetic susceptibility logs and sediment thickness in high-resolution seismic profiles. Magnetic susceptibility of surface samples reveals an increased input of magnetic grains to the Laptev Sea deriving from the Anabar and Khatanga river catchments. Exposed magnetite schists and volcanic rocks of the Anabar shield and Putoran Plateau, respectively, function as major source of magnetic material. The distribution of magnetic susceptibility in association with the thickness of the Holocene sediments indicates bottom-current induced sediment transport guided by major submarine valleys on the Laptev Sea shelf. The sites of filled paleoriver channels identified in the seismic profiles suggest that during the Late Weichselian sea-level lowstand river runoff continued through four of the major valleys on the exposed Laptev Sea shelf. The sediments at the top of the lowstand deposits in front of the Anabar-Khatanga valley, represented in the seismic profiles by prograding deltas, are characterized by outstandingly high magnetic susceptibility values. Radiocarbon datings approximate the deposition of these high magnetic sediments between 10 and 13.4 ka. It is suggested that this increased input of magnetic material is related to the deglaciation of the Anabar shield and the Putoran Plateau and thus support their glaciation during marine isotope stage (MIS) 2.  相似文献   

14.
川西盆地演化及盆地叠合特征研究   总被引:4,自引:2,他引:2  
川西盆地位于青藏高原松潘甘孜构造带东缘龙门山前陆地带,是四川盆地的一部分。自震旦纪以来,川西盆地经历了海相盆地与陆相盆地两个时期的演化,其中陆相盆地演化与松潘-甘孜构造带及龙门山的形成发展密切相关。晚三叠世以来,川西盆地与松潘-甘孜构造带、龙门山构造带之间经历了盆岭耦合与盆山耦合两期构造动力学演化过程,形成了结构复杂、多期演化的叠合盆地,其盆地性质、类型在不同地质时期各不相同。总的说来,川西盆地经历稳定克拉通海盆发展时期(震旦纪-中三叠世)、海陆交互相断陷盆地发展时期(上三叠世须家河组一段-须家河组三段)、陆相坳陷盆地发展时期(须家河组四段-中侏罗纪世)、前陆盆地发展时期(晚侏罗世-现今),最终形成了4期单型盆地的有序叠置。  相似文献   

15.
The first comparative paleolithochemical characteristics of Early Precambrian ferruginous-siliceous formations of the East European Craton confined to four stratigraphic levels—Lower Archean, Upper Archean (Lopian), Lower Karelian, and Upper Karelian—are presented. Using the MINLITH method and software package for lithochemical calculations, the possible primary composition of metasedimentary rocks is reconstructed and paleogeographic settings of sedimentation are suggested. It is shown that different age formations represented initially lithogenetic groups with different compositions and quantitative relationships between the major types of sedimentary rocks with gradual transitions and genetic affinity. They accumulated in paleotectonic and facies settings that were specific for each stage of iron ore sedimentation, resulting in the development of four genetic (Bug, Algoma, Okolovo, and Lake Superior) types of ferruginous-siliceous formations.  相似文献   

16.
目前,大陆架科学钻探CSDP-2井是南黄海盆地中部隆起上的唯一深钻,是揭示南黄海中-古生界海相地层时代,恢复其沉积环境和构造运动的基准井。本文针对该井开展岩心描述并进行薄片观察,结合测井数据、古生物化石等资料,将志留系-石炭系划分为下志留统高家边组、侯家塘组、坟头组,上泥盆统五通组,下石炭统高骊山组、和州组,上石炭统黄龙组、船山组。其中,志留系沉积了一套浅海陆棚相的细碎屑岩,沉积物以浅海-滨海相砂泥岩为主;泥盆系五通组同样为碎屑岩沉积,稳定的石英砂岩和紫红色泥岩并存,下部为潮坪相,上部则为三角洲相;而石炭系发育台坪、泻湖、颗粒滩等碳酸盐岩台地亚相,岩性以生屑灰岩和泥晶灰岩为主。区域地层对比表明,南黄海盆地中-古生界海相地层是下扬子区由陆域向海域的延伸,其志留系-石炭系岩性序列与下扬子陆域基本一致。  相似文献   

17.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

18.
赵兵  刘登忠  陶晓风  马润则  胡新伟  王辉 《地质通报》2010,29(10):1633-1639
在西藏措勤县曲洛乡门缸错地区发现了侏罗纪地层,详细描述了实测的侏罗系剖面,将该套地层暂时命名为曲洛组。讨论了该组的岩石组合特征和沉积环境,认为主要为一套海陆过渡三角洲—滨岸泻湖相沉积。根据曲洛组中的双壳化石、古植物及孢粉组合特征将这套地层的时代确定为早侏罗世。措勤地区下侏罗统的发现为区域地质构造演化研究和矿产资源勘查提供了新资料。  相似文献   

19.
塔中地区寒武系-奥陶系碳酸盐岩Sr元素和Sr同位素特征   总被引:5,自引:3,他引:2  
使用VG354固体同位素质谱仪对中1、中4井的25个碳酸盐岩样品做了Sr同位素测试, 并利用电感耦合等离子质谱仪(ICP-MS) 对塔中地区4口井共109个碳酸盐岩样品测试了Sr、Mn元素的含量.通过对Sr、Mn元素含量分析, 及中1、中4井碳酸盐岩的Sr同位素组成分析, 对比全球奥陶系海相碳酸盐的Sr同位素分析结果及演化趋势, 得出了如下认识: (1) 塔中地区奥陶纪87Sr/86Sr比值与全球海水Sr同位素演化趋势基本一致, 具有随时间下降的总体趋势, 这与广阔陆表海和有关的沉积物对放射性成因锶的封存作用有关, 说明海平面变化和白云岩化作用仍然是该区海相碳酸盐岩锶同位素组成与演化的主要控制因素; (2) 塔中地区早奥陶世的87Sr/86Sr比值与全球海水Sr同位素比值相当, 说明该区早奥陶世碳酸盐岩成岩环境为正常海水, 且早奥陶世87Sr/86Sr比值有单调降低的规律, 说明与海平面变化有关; (3) 塔中地区晚奥陶世87Sr/86Sr比值比全球海水高, 其原因是白云岩化作用和晚奥陶世盆地抬升近地表水带来高87Sr/86Sr比值, 且晚奥陶世87Sr/86Sr比值为整体升高的趋势; (4) 塔中地区奥陶纪碳酸盐岩中Mn元素含量变化不大, 反映了塔中地区奥陶纪成岩环境主要为浅水相, 但也有深水相, 白云岩化对其影响不大; (5) 塔中地区奥陶纪碳酸盐岩中Sr元素含量变化较大, 反映该时期该区碳酸盐岩成岩流体主要为海水, 但也有混合水, 白云岩主要为Ⅲ类白云岩和Ⅰ类白云岩.   相似文献   

20.
赵兵  刘登忠  陶晓风  马润则  胡新伟  王辉 《地质通报》2010,29(11):1633-1639
在西藏措勤县曲洛乡门缸错地区发现了侏罗纪地层,详细描述了实测的侏罗系剖面,将该套地层暂时命名为曲洛组。讨论了该组的岩石组合特征和沉积环境,认为主要为一套海陆过渡三角洲—滨岸泻湖相沉积。根据曲洛组中的双壳化石、古植物及孢粉组合特征将这套地层的时代确定为早侏罗世。措勤地区下侏罗统的发现为区域地质构造演化研究和矿产资源勘查提供了新资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号