首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solar extreme ultraviolet (e.u.v.) flux and solar ultraviolet (u.v.) flux in the Schumann-Runge continuum region have been measured by spectrometers on board the Atmosphere Explorer satellites from about 1974 to 1981. The solar flux spectra measured on 23 April 1974 (a day the Atmosphere Explorer satellite reference spectrum was obtained), 13–28 July 1976 (a period of spotless conditions near solar cycle minimum), and 19 February 1979 (a day near solar cycle maximum) are used to examine the global mean temperature structure of the thermosphere above 120 km. The results show that for solar cycle minimum the calculated global mean exospheric temperature is in agreement with empirical model predictions, indicating that the energy absorbed by the thermosphere is balanced by downward molecular thermal conduction. For solar cycle maximum the energy absorbed by the thermosphere is not balanced by downward thermal conduction but agreement between the calculated and observed temperature is obtained with the inclusion of 5.3μm radiational cooling by nitric oxide. Model calculations of the minor neutral constituents in the thermosphere show that about three times more nitric oxide is produced during solar cycle maximum than solar cycle minimum conditions. The results suggest that nitric oxide cooling is small during solar cycle minimum, because of low nitric oxide densities and low thermospheric temperatures, but it becomes significantly larger during solar cycle maximum, when nitric oxide densities and thermospheric temperatures are larger.23 April 1974 was a moderately disturbed day and the results of the global mean temperature calculation indicate that it is necessary to consider a high latitude heat source associated with the geomagnetic activity to obtain agreement between the calculated and observed global mean temperature structure.  相似文献   

2.
Spectropolarimetric features of thermal cyclotron radiation of solar coronal loops and the possibility of interpretation of the observed reversal of the sense of polarization of centimeter and decimeter waves are discussed. To this end, thermal cyclotron radiation is computed in terms of the simplest model of a three-dimensional hot loop (a half-torus). Such a loop is shown to be capable of changing appreciably the properties of the radiation of a solar active region at centimeter and decimeter wavelengths. A detailed analysis is performed to determine the conditions under which the radiation spectrum of an active region containing a coronal loop may have a complex pattern with several maxima or relatively narrow-band cyclotron lines, and the sense of polarization may change several times in the wavelength interval considered. These conditions are modelled by such parameters as the structure of the magnetic field, electron density, and size of the loop. The results of the computations of two-dimensional brightness temperature distributions at different wavelengths for ordinary and extraordinary waves at fixed points of the loop and the integrated parameters of the flux and polarization of radiation in terms of the model discussed are reported. Cases are considered where the line of sight is crossed by one or two loops. The expected distribution of polarization across the source in the model considered is compared to the results of RATAN-600 observations of the solar active region AR 7962 made on May 12–14, 1996.  相似文献   

3.
Pierrard  Viviane  Lamy  Hervé 《Solar physics》2003,216(1-2):47-58
Due to their different mass and varying charge states, heavy solar ions provide invaluable information on the physical mechanisms responsible for the heating of the corona and the solar wind acceleration. It is shown in the present work that some key characteristics observed in the corona are straightforward features predicted by the velocity filtration effect. This mechanism originally proposed by Scudder (1992a,b) accounts for the heating of the corona by just assuming that the velocity distribution functions have enhanced supra-thermal tails. The apparent `heating' is then a natural consequence of the increasing ratio of supra thermal over thermal particles as a function of altitude. Applied to the minor ions, it offers a natural explanation for the high temperatures of the heavy ions compared to the protons. The kinetic filtration theory predicts temperatures more than proportional to the mass of the ions, with a small correction for the charge state. With sufficiently high temperatures, the ions flow faster than the protons. These characteristics are in good agreement with the most recent spectroscopic and in-situ solar wind observations.  相似文献   

4.
We investigate low-intensity microflares in the soft component of the solar X-ray radiation over the period from September through December 1995 within the framework of the Interball—Geotail project. We derived the intensity distribution of microflares and found correlations between the daily mean peak fluxes of X-ray bursts from microflares of various classes and the daily mean values of the thermal background of the solar corona.  相似文献   

5.
Long-wave energy emitted by the Earth-atmosphere into space is characterized by changes in power over time that always lag behind the changes in power of the absorbed solar radiation due to slow variation in enthalpy of the Earth-atmosphere system. Long-term variation of the solar energy radiation absorbed by the Earth remains uncompensated by the energy radiated into space over the interval of time that is determined by the thermal inertia. The basic state of the climate system is when the debit and credit sides in the Earth’s global annual mean energy budget (including the air and water envelopes) are almost always unbalanced. The annual mean balance of the heat budget of the Earth-atmosphere over a long time period will reliably define the behavior and magnitude of the energy excess accumulated by the Earth or energy deficit to allow us to determine adequately and to predict beforehand the trend and amplitude of the forthcoming climate change using the prognosis of variations in the total solar irradiance (solar constant). The decrease in solar constant has been observed since the early 1990s. The Earth as a planet will have a negative balance in the energy budget in the future as well, because the Sun is entering the decline phase of the bicentennial luminosity changes. This will lead to a drop in temperature in approximately 2014. The increase in albedo and decrease in greenhouse gas concentration in the atmosphere will result in the additional decrease in absorbed portion of the solar energy and reduced greenhouse effect. The additional drop in temperature exceeding the effect of decreased solar constant can occur as a result of successive feedback effects. A deep bicentennial minimum in solar constant is to be anticipated in 2042 ± 11 and the 19th Little Ice Age (for the last 7500 years) may occur in 2055 ± 11.  相似文献   

6.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

7.
As part of a study of satellite thermal control, data were obtained on earth-reflected solar radiation and on the stability of thermal-control coatings. The intensity distribution of incoming solar radiation to earth was found to be shifted toward the ultraviolet region upon reflection by the atmosphere. As a result of the shift, the intensity of reflected radiation reaches a maximum in the near ultraviolet. At shorter wavelengths in the ultraviolet region, the intensity drops sharply to zero as a result of absorption of incoming radiation by ozone in the upper atmosphere. Comparisons of calculated intensity distributions with measured distributions for two different atmospheric conditions gave good agreement, except at the shorter ultraviolet wavelengths where the calculations did not adequately include the effect of ozone absorption. Measurements of stability of thermal-control coatings showed a lower degradation rate of white paints than was obtained on other flight experiments flown outside of the protective influence of earth's magnetosphere. The differences in degradation rate were much larger than expected, indicating that further study is required in the development of white coatings for spacecraft thermal control.  相似文献   

8.
Upgrading existing radiotelescopes to operate at higher frequencies requires not only a better reflecting surface accuracy, but also more precise pointing capability. To analyse the thermal behaviour of the 32 metre VLBI parabola at Medicina, we have installed accurate temperature sensors on the pedestal beams of the antenna and an inclinometer at the elevation axis. The thermal model presented here, starts from a structural Finite Elements Analysis of the radiotelescope and can closely predict the deformations measured by the inclinometer, even in the worst solar radiation conditions. This analysis allows also insights into future improvements.  相似文献   

9.
The latitudinal and seasonal variation of the direct solar radiation incident at the top of the atmosphere of Uranus and Neptune has been recalculated by use of updated values for the period of axial rotation and the oblateness. Values for the solar radiation are given in Watt per square meter instead of the unit used in earlier papers (calories per square centimeter per planetary day). The solar radiation averaged over a season and a year as a function of planetocentric latitude has also been reviewed. In addition, attention is made to the ratio of the solar radiation incident on an oblate planet to that incident on a spherical planet.  相似文献   

10.
Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32?–?9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6?–?3.6 mm (Band 3) and 1.1?–?1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.  相似文献   

11.
The principal features which distinguish the atmosphere on Venus from that of the Earth are the slow rotation of the planet, the large mass of the atmosphere, and the opacity of the atmosphere to long-wave radiation. The slow rotation of the planet gives rise, first of all, to nongeostrophuc dynamics (the atmosphere gas has a tendency to move along the pressure gradient), with the result that the region of the main influx of solar energy is located on one side of the planet, and the region of maximum cooling on the other. These considerations lead to a much simpler scheme of circulation than that in the Earth's atmosphere.The large mass of the atmosphere is the cause of a high thermal and mechanical inertia, which explains why the atmospheric circulation is asymmetrical relative to the solar-antisolar axis. The daily center of circulation is displaced to the second half of the Cytherean solar day, i.e., to the line of zero budget of thermal energy corresponding to a height of the Sun abobe the horizon of about 20°. The notions of cold and warm regions are very relative for Venus. While the horizontal temperature differences on the Earth may reach 100°, a mean horizontal temperature drop as small as 3° in the Cytherean atmosphere may be looked upon as an exceptional phenomenon. This high thermal homogeneity is due to a very large thermal inertia, with cooling at the poles never manifesting itself in the temperature fields obtained.The opacity of the Cytherean atmosphere to long-wave radiation results in vertical heat transfer by turbulence, mesoscale convection, and large-scale currents. This produces adiabatic stratification in the troposphere and a high temperature in the lower layers.These phenomena were studied in a general manner using two- and three-level models. Steps have recently been undertaken to investigate in greater detail the vertical structure of the troposphere on Venus using ten-level models. It appeared that the vertical dynamic structure of the troposphere is very much dependent on the distribution in height of the solar energy influx. In the greenhouse model, the entire atmosphere is affected by circulation. Pronounced velocity maxima are observed in the lower and upper layers. In a model with adsorption of solar radiation in the upper layer, the velocity is small in the lower layers, but it rapidly increases and changes its direction several times in the upper layers. The mean kinetic energy of the atmosphere proves to be two to three times smaller than in the greenhouse model.Attempts have been made in the calculations to find the principal modes of the statistical fluctuations. The results obtained show that atmospheric circulation may be represented by a global mean basic state following the rotation of the planet with deviations from that basic state which are indeterminate disturbances. The mean basic state exhibits a high degree of symmetry relative to the equator. On account of nonlinearity, the disturbances were observed in all the models independently of space and time resolution. This phenomenon appears to reflect the actual properties of the Cytherean atmosphere and has no bearing on the details of the numerical scheme.  相似文献   

12.
The distribution of temperature and emission measure in the stationary heated solar atmosphere was found for the limiting cases of slow and fast heating, when either the gas pressure or the concentration are constant through the layer depth. Results are relevant to the conditions when the energy injected by waves or by non-thermal particles or in some different way quickly transforms into a thermal flux. Under these conditions the temperature distribution with depth is determined by radiation loss and thermal conductivity, and at any values of energy flux and plasma concentration it is characterized by two universal functions. One of them gives the relation between the energy flux and temperature at the region boundary: the other - the temperature run with the depth. This run is such that a considerable part of the energy is radiated by a thin transition region with a very large temperature gradient.The results may be applied for calculation of the temperature and the emission measure both for the high temperature region of a flare, and for the quiet corona. The dimensionless structure of the transition region is the same for any value of the energy flux. These results concerning solar flares can help to explain the identity of optical spectra for flares of different types, the emission in a wide temperature interval from nearly the same region of space and the very small thickness of the region emitting optical lines. The latter is due to the shell structure of the flare as opposed to the usually assumed filamentary one.  相似文献   

13.
The interpretation of unexpected characteristics of Pioneer Venus temperature measurements, and of the large difference between these and the Venera results, is aided by new Venus temperature profiles derived from engineering measurements of the Pioneer Venus Small-Probe Net Flux Radiometer (SNFR) instruments. To facilitate correction of a temperature-dependent radiometric response, these instruments monitored the temperatures of their deployed radiation detectors. The accurate calibration of the temperature sensors, and their strong thermal coupling to the atmosphere, make it possible to deduce atmospheric temperatures within 2°K (at most altitudes) using a simple two-component thermal model to account for lag effects. These independent temperature profiles generally confirm to high accuracy, the small-probe results of A. Seiff, D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer (1980a, J. Geophys. Res.85, pp. 7903–7933) concerning vertical structure and horizontal contrast in the lower atmosphere, although the stable layer below 25 km is found to be slightly more stable (by about 0.4°K/km) and absolute temperatures are an average of 2°K higher. The measured Day-Night thermal contrast is compatible with predicted responses to the diurnal variation in solar heating, except near the cloud base, where 3–5°K differences may be due to thermal radiative heating differences associated with different cloud opacities. Temperature contrasts between latitudes 30 and 60° are roughly consistent with cyclostrophic balance. But pressure and temperature measurements by the Pioneer Venus Sounder probe at 4° latitude, when compared to Small-probe results, imply unreasonably large equatorward accelerations of 100 (m/sec)/day. Poleward accelerations compatible with cyclostrophic balance can be obtained if Sounder-probe temperatures are increased by a scale-factor correction reaching 6–7°K at 13 km.  相似文献   

14.
An experimental air–ground climate station is operating in Pomquet, Nova Scotia, monitoring meteorological (surface air temperatures at three heights, wind velocity and direction, incoming solar radiation, precipitation, snow depth and relative humidity) and ground thermal variables (soil temperatures at depths of 0, 5, 10, 20, 50 and 100 cm). Readings are taken every 30 s and 5 min averages are stored, in order to characterize the energy exchanges at the air ground interface. Here, I report on the first year of operation. For spring, summer and fall, we find that soil temperatures track surface air temperatures with amplitude attenuation and phase lag with depth confirming that heat conduction adequately describe the soil thermal field at the Pomquet site. For winter conditions, we find that heat transfer is dominated by latent heat released during soil freezing and to a lesser extent by the insulating affect of snow cover. A numerical model of heat conduction was used in order to estimate the magnitude of the heat released by freezing during the winter months. I also show that there is an inverse correlation for the difference between soil (100 cm) and air temperatures and the incoming solar radiation at the site.  相似文献   

15.
Galsgaard  K.  Mackay  D.H.  Priest  E.R.  Nordlund  Å 《Solar physics》1999,189(1):95-108
Several mechanisms have been suggested to contribute to the heating of the solar corona, each of which deposits energy along coronal loops in a characteristic way. To compare the theoretical models with observations one has to derive observable quantities from the models. One such parameter is the temperature profile along a loop. Here numerical experiments of flux braiding are used to provide the spatial distribution of energy deposition along a loop. It is found that braiding produces a heat distribution along the loop which has slight peaks near the footpoints and summit and whose magnitude depends on the driving time. Using different examples of the heat deposition, the temperature profiles along the loop are determined assuming a steady state. Along with this, different methods for providing average temperature profiles from the time-series have been investigated. These give summit temperatures within approximately 10% of each other. The distribution of the heating has a significant impact on both the summit temperature and the temperature distribution along the loop. In each case the ratio between the heat deposited and radiation provides a scaling for the summit temperature.  相似文献   

16.
我们认为存在于太阳高层大气中的一种稳定的物质交换,可以起到冷却日冕和加热色球一日冕过渡区的热机作用。还考虑到来自日冕的热传导和过渡区的辐射损失,计算了太阳过渡区的温度、密度和速度分布。并对物质流通量及速度边值与太阳过渡区厚度之间的关系作了讨论。  相似文献   

17.
New data about the top clouds of Venus were obtained during the radiometric experiment on-board the Venera 9 and Venera 10 orbiters. A diurnal component of the ir thermal radiation was determined for the latitude range ?40, +50°. The brightness temperature of radiation referred to the normal was measured; it was 244°K at night and 239°K at the subsolar point for the 7- to 13-, 17- to 30-μm bands. Minimum temperatures correspond to the meridian of local time 16.00h and are 232°K. There is also a zone of lower temperatures in the region of local time 7.5h. Absolute temperatures were measured with an accuracy of ?1.9°+1.2°. Thermal radiation has no distinct latitudinal dependence but has a day-night asymmetry, with the night radiation flux exceeding that on the day side by 17%. The limb-darkening law for thermal radiation is rather complicated, depending on the time of day. There are at least two states of the radiating cloud cover: day and night. The extinction coefficient is close to 0.24 km?1. The analysis shows that the source function of the medium is close to Planck's function. During the day the flux of thermal radiation is assumed to be weakened by an aerosol medium forming by photochemical processes. Comparison of experimental and calculated data yields a particle concentration in the radiating cloud cover of about 95 cm?3. Experimental data and the results of ground-based measurements were used to determine the radiometric albedo of Venus, 0.79?0.01+0.02.  相似文献   

18.
The mean illumination conditions and surface temperatures over one orbital period are calculated for the Asteroid 4 Vesta using a coarse digital elevation model produced from Hubble Space Telescope images. Even with the anticipated effects of finer-scale topography taken into account, it is unlikely that any significant permanently shadowed regions currently exist on Vesta due to its large axial tilt (≈27°). However, under present day conditions, it is predicted that about half of Vesta’s surface has an average temperature of less than 145 K, which, based on previous thermal modeling of main belt asteroids, suggests that water ice could survive in the top few meters of the vestal regolith on billion-year timescales.  相似文献   

19.
The distribution of axial rotation velocities of near-Earth asteroids (NEAs) substantially differs from that of the Main-Belt asteroids by an excess of both quickly and slowly rotating objects. Among the possible causes of this difference is the influence of the solar radiation—the so-called YORP effect—that arises from the absorption of solar energy and its reemission in the thermal range by a rotating body of irregular shape. It is known that the magnitude of this effect depends on the asteroid size and the quantity of received solar energy (the insolation). Analysis of the observational data showed that the mean diameter of NEAs decreases from the middle of the distribution to the edges, i.e., the excess of both slowly (ω ≤ 2 rev/day) and quickly (ω = 8–11 rev/day) rotating objects is formed due to the asteroids with sizes smaller than those in the middle of the distribution, which agrees well with the influence of the YORP effect. Moreover, the dependence of the axial rotation velocity of NEAs on the relative insolation shows that, for the NEAs referred to, both excesses are found in orbits where, on average, they receive 8–10% more solar energy than the NEAs in the middle of the distribution. This result also agrees with the character of the influence of the YORP effect and can be considered as an additional argument in its support. Thus, the study showed that one can infer that the currently available observational data suggest the possible influence of the YORP effect on the axial rotation of the near-Earth asteroids having sizes of D ~ 2 km and less. This is the first attempt to find the influence of the YORP effect on the axial rotation of the NEA family as a whole.  相似文献   

20.
The heat transfer in the boundary layer over a hot porous semi-infinite flat plate for a two-component plasma model is computed using an asymptotic series expansion for large suction. The temperature distribution and the Nusselt number are compared with those of a fully-ionized plasma, with and without thermal radiation. Radiative effect increases the range of influence of the temperature and the value of the Nusselt number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号