首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
GEOCHEMISTRY CONSTRAIN ON TECTONIC EVOLUTION OF PALEO-TETHYS IN SE YUNNAN,CHINA  相似文献   

2.
GEOLOGICAL EVOLUTION AND OROGENY OF EAST KUNLUN TERRAIN ON THE NORTHERN QINGHAI—TIBET PLATEAU1 XuZQ ,YangJS ,ZhangJX ,etal.AcomparisonbetweenthetectonicunitsonthesidesoftheAltunsinistralstrike slipfaultandthemechanismoflithosphericshearing[J] :ActaGeologicaSinica,1999,73:193~ 2 0 5(inChinesewithEnglishabstract) . 2 YangJS ,XuZQ ,LiHB ,Wu ,etal.DiscoveryofeclogiteatthenorthernmarginofQaidambasin,NWChina[J] .Chi neseScienceBulletin,1998,4 3…  相似文献   

3.
张臣  吴泰然 《地质科学》1999,34(3):381-389
内蒙古苏左旗南部温都尔庙群由早元古代宝音图群(1910Ma),中、新元古代温都尔庙群(1511Ma,825Ma)和早古生代乌勒图-乌兰呼都格-查干乌拉蛇绿混杂岩(409Ma)组成。出露于乌勒图-乌兰呼都格-查干乌拉地区的乌勒图蛇绿混杂岩是由层位不全的,肢解了的蛇绿岩经构造混杂而成。其基质主要为绢云绿泥石英片岩、变质凝灰质砂岩,局部为绿泥片岩。岩块成分复杂,大小不一,形态各异,杂乱分布,主要岩石类型为白云岩、硅质岩、超基性岩、基性火山岩、灰岩。蛇绿混杂岩岩石化学分析表明,超基性岩MgO/FeO*比值在8-13,MgO/(MgO+ FeO*)比值在0.85-0.87 之间,与世界大多数变质橄榄岩相同。基性火山岩具大洋拉斑玄武岩特征,常量元素和稀土元素显示陆间洋盆性质。蛇绿混杂岩被晚泥盆世色日巴彦敖包组地层不整合覆盖,前者所含超基性岩块Sm-Nd 同位素等时线年龄为409Ma,表明其形成于中、晚志留世,于晚泥盆世前发生构造侵位。  相似文献   

4.
5.
A PETROLOGICAL OVERVIEW OF THE KOHISTAN MAGMATIC ARC, NW HIMALAYA, N. PAKISTAN1 TahirkheliRAK ,MattauerM .ProustF ,etal.1979.In :GeodynamicsofPakistan[C].FarahA ,DeJongKA ,eds.GeolSurvPakistan ,Quetta ,1979.12 5~ 130 . 2 CowardMP ,WindleyBF ,BroughtonRD ,etal.In :CollisionTectonics[C]..CowardMP ,RiesAC ,eds.GeolSoc,London ,SpecPub ,1986 ,19:2 0 3~ 2 19. 3 BardJP ,MaluskiH ,MattePh ,etal.GeolBull ,PeshawarUniversity ,1980 ,13:87~ 93. …  相似文献   

6.
A regional melange zone, 150 km long and 30 km wide, forms the southern boundary and structural capping to a high-pressure blueschist belt in northern New Caledonia. The disrupted country rocks in the melange zone are Mesozoic metagrey-wackes and Eocene chert-limestone sequences which have been penetrated from below by tectonically-injected ophiolite slivers containing metamorphosed serpentinite, gabbro, dolerite, basalt, tuff, chert and shale. An ocean crust origin for these rocks is indicated by chemical, mineralogical and radiometric data from coastal outcrops at Anse Ponandou on the northeast coast. The age (41 m.y.), metamorphic environment (350 ° C at 7 kb), and mineral association (acmitic jadeite-riebeckite-pyropic spessartine-pistacitic epidote-lawsonite-high Si phengite) are significantly different from those of the adjacent regional high-pressure schist belt, indicating a separate structural site for blueschist metamorphism of buried ophiolitic ocean crust during early Tertiary orogenesis.  相似文献   

7.
TECTONIC EVOLUTION OF THE WESTERN KUNLUN AND KARAKORAM MOUNTAINS—SOME NEW OBSERVATIONS FROM A MULTI-DISCIPLINARY GEOSCIENTIFIC TRANSECT (MGT) IN NW TIBET  相似文献   

8.
A DISCUSSION ON THE STRUCTURE AND TECTONIC EVOLUTION OF THE ALTUN OROGENIC ZONE  相似文献   

9.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

10.
The extension of the suture zone between the Siberian and Kazakhstan continents in China has been a matter of debate because few outcrops of ophiolitic melange have been found so far.The recently found Tuerkubantao ophiolitic melange,which is located east of the Kekesentao Mt.in the Buerjin County of the Chinese Altay,provides an important clue for this problem.This paper presents the results of field investigation,petrology,U-Pb isotope dating of zircons and bulk-rock geochemistry of the Tuerkubantao melange rocks.The melange consists of fault-contacted ultramafic rocks,gabbro, diabase,basalt,flysch and granitoids.The ultramafic-mafic rocks are Mg-rich(Mg#=4.25—6.35) and w(SiO2) spans 38.8%—46.8%.Basalt and gabbro are geochemically similar and are characterized by low w(FeOt)(10.9%),total alkali w(Na2O+K2O)=2.58%) and w(TiO2)(1.17%) and affinity to the Mg-rich tholeiite series.The flat REE and trace-element patterns of the ultramafic-mafic rocks are indicative of their ophiolite origin,i.e.,formation in a mid-oceanic ridge setting.The fragments of low-K gneissic granite formed in suprasubduction or syn-collisional setting.Zircons from gabbro and gneissic granite yielded U-Pb ages of 363 and 355 Ma.respectively,suggesting Late Devonian mid-oceanic spreading and oceanic subduction accompanied by suprasubduction magmatism.The Tiierkubantao ophiolite together with the Qiaoxiahala and Buergen ophiolites of the Kekesentao belt define an ophiolitic melange belt extending along the Erqis fault.This belt probably belongs to the Ural-Zaisan -South Mongolian suture-shear zone formed during the subduction of the Paleo-Asian Ocean and subsequent collision of the Siberian and Kazakhstan continents.  相似文献   

11.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

12.
南天山蛇绿混杂岩中放射虫化石的时代及其构造意义   总被引:14,自引:0,他引:14       下载免费PDF全文
塔里木北缘南天山蛇绿混杂岩带沿乌瓦门、库勒湖、依奇科里克、黑英山等地分布,黑英山段蛇绿混杂岩以梅什布拉克牧场一带出露最好。该蛇绿岩时代的确定事关天山造山带形成与演化历史的认识。对采自梅什布拉克蛇绿混杂岩带基质中的20多件硅质岩进行了薄片观察,从中挑选出若干件代表性硅质岩和硅质泥岩做微古化石鉴定,从中发现较多放射虫化石,属于内射虫类和原笼虫类,时代为晚泥盆世法门期—早石炭世杜内期—维宪期,早石炭世代表南天山洋盆关闭的年龄下限,或构造混杂的早期年龄。结合区域地质及其前人研究成果,认为南天山的乌瓦门、库勒湖、依奇科里克、黑英山各段蛇绿岩在物质组成与时空延伸上均有可比性,共同构成一个大型的南天山晚古生代构造缝合带。现有资料不支持南天山存在晚二叠世洋盆的认识。  相似文献   

13.
ABSTRACT South of the Main Mantle Thrust in north Pakistan, rocks of the northern edge of the Indian plate were deformed and metamorphosed during the main southward thrusting phase of the Himalayan orogeny. In the Hazara region, between the Indus and Kaghan Valleys, metamorphic grade increases northwards from chlorite zone to sillimanite zone rocks in a typically Barrovian sequence. Metamorphism was largely synchronous with early phases of the deformation. The metamorphic rocks were subsequently imbricated by late north-dipping thrusts, each with higher grade rocks in the hanging wall than in the footwall, such that the metamorphic profile shows an overall tectonic inversion. The rocks of the Hazara region form one of a number of internally imbricated metamorphic blocks stacked, after the metamorphic peak, on top of each other during the late thrusting. This imbrication and stacking represents an early period of post-Himalayan uplift.  相似文献   

14.
POLYPHASE METAMORPHISM AND INVERTED THERMAL GRADIENT IN THE LESSER HIMALAYA OF CENTRAL NEPAL: CONSTRAINTS FROM WHITE MICA COMPOSITIONS  相似文献   

15.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

16.
The Pouébo and Diahot terranes of NE New Caledonia mostly comprise eclogite to blueschist facies metabasite and metasedimentary rocks that experienced c. 40 Ma metamorphism. This Eocene high‐P event has been linked with the SW‐directed obduction of the New Caledonian Ophiolite, an extensive ultramafic nappe that dominates outcrop in the south of the island. In the north, ultramafic lithologies are found only as sheets or discrete lenticular masses interleaved with, but separated from, the eclogites and blueschists by foliated talc–chlorite–serpentine–carbonate‐bearing rocks. The base of the largest and best‐preserved ultramafic body at Yambé is marked by a distinctive (2 m thick) layer of high‐P mylonite that preserves evidence for early blueschist facies conditions (S1) as inclusions in eclogite facies minerals. Textural evidence preserved in olivine‐bearing serpentinites and their bounding mafic mylonites suggest that the ultramafic bodies were emplaced within the structurally highest levels of the high‐P terrane as serpentinite tectonites sourced from hydrated mantle, formerly in the hangingwall of the Eocene subduction zone. Serpentinite emplacement accompanied burial of the NE New Caledonian margin at T<500 °C and P<16 kbar. The ultramafic fragments were buried to depths of 50–60 km in the subduction zone, where olivine was stable and coarse‐grained garnet–omphacite‐rich assemblages developed in low strain domains within enclosing mylonites. Host metabasic and metasedimentary rocks from the structurally highest portions of the high‐P belt have a prograde record identical to that of the ultramafic tectonites. The early emplacement and similar P–T history of host rocks and ultramafic masses suggest that NE New Caledonia preserves a fossil slab/mantle–wedge boundary reactivated during exhumation.  相似文献   

17.
内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究   总被引:31,自引:0,他引:31       下载免费PDF全文
徐备  J.Charvet  张福勤 《地质科学》2001,36(4):424-434
在苏尼特左旗以南地区的中古生代造山带的混杂岩带内发现了以岩块形式出现的蓝片岩,其矿物组合为斜长石+阳起石+蓝闪石+绿帘石+榍石。蓝片岩化学成分说明由基性火山岩变质而成。矿物化学分析表明,蓝片岩中角闪石可分为钙质、钙钠质和钠质3类。钙质闪石均为阳起石,钙钠质闪石为蓝透闪石和冻蓝闪石,钠质闪石为蓝闪石和青铝闪石及少量镁钠闪石。利用Na(M4)和Al的含量推测本区钙质、钙钠质和钠质3类闪石的压力从0.3~0.7Gpa,表明蓝片岩相变质作用的压力约为0.7GPa。用化学反应限定蓝片岩的形成温度为200~375℃左右。40Ar39Ar同位素年代学测定蓝闪石的等时线年龄为383±13Ma(1δ)。这些结果进一步证实沿贺根山—苏尼特左旗南是一条中古生代的缝合线,其俯冲—碰撞的标志即为混杂岩带以及其中的蓝片岩。  相似文献   

18.
Abstract

Basic volcanic rocks within the Zildat ophiolitic mélange of Indus suture zone in eastern Ladakh are medium to fine grained with partially preserved primary texture and mineralogy. These rocks are predominantly alkaline basalt with high Nb/Y and enriched incompatible trace element characteristics, similar to those of the oceanic island basalt (OIB). The minor sub-alkaline basaltic rocks resemble N-type mid ocean ridge basalt (N-MORB) but with much lower abundances of incompatible trace element including REE. The alkaline rocks probably generated through variable, but low degrees of partial melting of enriched mantle source and evolved through high pressure olivine and clinopyroxene fractionation. Low pressure plagioclase and Fe- Ti oxide do not appear to be major fractionating phases. Limited data on the sub-alkaline rocks suggest that their parental melts were derived from mantle sources some what similar to that of N- MORB. Significant role of added cumulates of olivine, clinopyroxene and Fe- Ti oxides is also indicated in their genesis. Ophiolitic mélanges all along the Indus suture zone appear to have formed due to the accumulation of mélange material in the upper part of the subduction zone where they suffered glaucophanitic (blueschist) metamorphism and retrograded partially to greenschist grade as these were subsequently obducted to its present position probably during the Cenozoic Himalayan orogeny due to collision of Indian and Eurasian plates.  相似文献   

19.
The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13–15.5 kbar at temperatures of 420–500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5–7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).  相似文献   

20.
VARIATIONS IN KAMILA AMPHIBOLITES FROM SOUTHEASTERN PART OF THE KOHISTAN ISLAND-ARC TERRANE,PAKISTAN  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号