首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone.

(1) Cretaceous (80–100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents.

(2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere.

(3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene–Eocene boundary.

(4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene.

These metamorphic rocks provide important constraints on the geometry and evolution of the India–Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present north of the Main Central Thrust. Moreover, the pressure metamorphism in the Kaghan massif in the western part of the syntaxis took place later, 7 m.y. after the metamorphism in the eastern part, suggesting that the geometry of the initial contact between the Indian and Asian continents was not linear. The northern edge of the Indian continent in the western part was 300 to 350 km farther south than the area east of the Nanga Parbat syntaxis. Such “en baionnette” geometry is probably produced by north-trending transform faults that initially formed during the Late Paleozoic to Cretaceous Gondwana rifting. Farther east in the southern Tibet, the collision occurred before 50.6 ± 0.2 Ma. Finally, high-pressure to ultrahigh-pressure rocks in the western Himalaya formed and exhumed in steep subduction compared to what is now shown in tomographic images and seismologic data.  相似文献   


2.
GEOLOGY OF THE NORTHERN ARUN TECTONIC WINDOW1 BordetP .Recherchesg啨ologiquesdansl’HimalayaduN啨pal,r啨gionduMakalu[R].EditionsduCNRS ,Paris ,196 12 75 . 2 BordetP .G啨ologiedeladalleduTibet (Himalayacentral) [J].M啨moireshorss啨riedelaSociet啨g啨ologiquedeFrance,1977,8:2 35~ 2 5 0 . 3 BurcfielBC ,ChenZ ,HodgesKV ,etal.TheSouthTibetanDetachmentSystem ,Hima…  相似文献   

3.
High‐grade gneisses (amphibolite–granulite facies) of the Namche Barwa and Gyala Peri massifs, in the eastern Himalayan syntaxis, have been unroofed from metamorphic depths in the late Tertiary–Recent. Rapid exhumation (2–5 mm year?1) has resulted in a pronounced shallow conductive thermal anomaly beneath the massifs and the intervening Tsangpo gorge. The position of the 300 °C isotherm has been estimated from fluid inclusions using CO2–H2O immiscibility phase equilibria to be between 2.5 and 6.2 km depth below surface. Hence, the near‐surface average thermal gradient exceeds 50 °C km?1 beneath valleys, although the thermal gradient is relatively lower beneath the high mountains. The original metamorphic fluid in the gneisses was >90% CO2. This fluid was displaced by incursion of brines from overlying marine sedimentary rocks that have since been largely removed by erosion. Brines can exceed 60 wt% dissolved salts, and include Ca, Na, K and Fe chlorides. These brines were remobilized during the earliest stages of uplift at >500 °C. During exhumation, incursion of abundant topography‐driven surface waters resulted in widespread fracture‐controlled hydrothermal activity and brine dilution down to the brittle–ductile transition. Boiling water was particularly common at shallow levels (<2.5 km) beneath the Yarlung Tsangpo valley, and numerous hot springs occur at the surface in this valley. Dry steam is not a major feature of the hydrothermal system in the eastern syntaxis (in contrast to the western syntaxis at Nanga Parbat), but some dry steam fluids may have developed locally.  相似文献   

4.
Hydrothermal activity and mesothermal-styled gold mineralisation occurs near the main topographic divide of most active or young collisional mountain belts. The Southern Alps of New Zealand is used in this study as a model for the mineralising processes. The collisional tectonics results in a two-sided wedge-shaped orogen into which rock is transported horizontally. Upper crustal rocks pass through the orogen and leave the orogen by erosion, whereas lower crustal rocks are deformed into the mountain roots. High relief drives meteoric water flow to near the brittle–ductile transition. Lower to upper greenschist facies metamorphic reactions, driven by deformation at the crustal decollement and in the root, release water-rich fluids that rise through the orogen. Intimate chemical interaction between fluid and rock results in dissolution and later precipitation of gold, arsenic and sulphur. Fluid flow and mineralisation in the topographic divide region is facilitated by a network of steeply dipping faults and associated rock damage zones where oblique strike-slip faults intersect the thrust faults that strike subparallel to the main mountain range.The Nanga Parbat massif of the western Himalaya is an example of an active collisional zone which hosts hydrothermal activity but no gold mineralisation. The lack of gold mineralisation is due to the following factors: CO2-dominated rising metamorphic fluid in dehydrated amphibolite-granulite facies metamorphic rocks does not dissolve gold and arsenic; hot (up to 400 °C) meteoric water confined to fractures in the gneiss limits dissolution of gold and arsenic; low density of hot water/dry steam, and low reduced sulphur content of fluid, restrict solubility of gold and arsenic; absence of fracture networks in the core of the massif and the small volumes of circulating fluid limit metal concentration; and lack of reactive rock compositions limits chemically mediated metal deposition.  相似文献   

5.
Southeast Asia comprises collage of continental blocks that were rifted out in phases from the northern parts of the Gondwanic Indo-Australian continent during the Paleozoic-Mesozoic time and were accreted through continental collision process following closure of the Paleo- and Neo-Tethys. The South China and Indo-China blocks were possibly rifted during early Palaeozoic, whereas, the Tibetan and SIBUMASU blocks were rifted during Permo-Carboniferous when the said margin was under glacial and/or cool climatic condition. The Indo-Burma-Andaman (IBA), Sikule, Lolotoi blocks were also rifted from the same Indo-Australian margin but during late Jurassic. This was followed by break-up of the Indian and the Australian continents during early Cretaceous. The opening of the Indian Ocean during the Tertiary was synchronous with closing of the Tethys.India-Asia collision during early-middle Eocene was a mega tectonic event. Apart from initiating the Himalayan orogeny and the eastward strike-slip extrusion of the Indochina block from the Southeast Asian continental collage along the Ailao Shan — Red River shear zone, it also caused early-mid Eocene continental-flood-basalt activity in the Himalayan foreland basin. Indian continent's post-collisional indentation-induced syntaxial buckling of Asian continental collage at its eastern end possibly caused late Paleogene highly potassic magmatism around the Gongha syntaxial area that was located close to the sutured margin of South China continent with Indochina block at the outer fringe of Namche Barwa syntaxis. These magmatic bodies are soon after left-laterally displaced by the Ailao Shan — Red River shear zone. The nature and chemistry of magma at these two settings indicate that both groups result from similar petrogenetic and tectonic processes representing deep-seated melts due to mantle decompression. Some deep faults produced at the edge of flexed Indian continental lithosphere and responsible for the development of the foreland basin may have produced continental-flood-basalt and related magma by decompressional melting of enriched sub-continental mantle. The site-specific location and time sequence of magmatism from the marginal parts of South China continent and located at the outer fringe of Namche Barwa syntaxis are strongly significant. It suggests that these magmatic bodies may also be genetically related to the India-Asia collision process and indentation-induced syntaxial buckling of upper mantle beneath the marginal parts of the South China rigid continent.  相似文献   

6.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

7.
GEOTECTONIC OF NAMCHE BARWA SYNTAXIS IN EAST TIBET, CHINA  相似文献   

8.
The Tertiary collision-related thermal history of the NW Himalaya   总被引:3,自引:0,他引:3  
Garnet‐whole rock Sm‐Nd data are presented for several samples from the Indian plate in the NW Himalaya. These dates, when combined with the P‐T evolution of the Indian plate rocks, allow a thorough reconstruction of the prograde thermal evolution of this region (including the Nanga Parbat Haramosh Massif) during the early Cenozoic. Combining these data with Rb‐Sr mineral separate ages, enables us to constrain the post‐peak cooling history of this region of the Himalaya. The data presented here indicate that the upper structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, and similar rocks in the Kaghan Valley to the south‐west, were buried to pressures of c. 10 kbar and heated to temperatures of c. 650 °C at 46–41 Ma. The burial of the lower structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, to similar depths but at higher temperatures of c. 700 °C, occurred slightly later at 40–36 Ma, synchronous with the imbrication and exhumation of the amphibolite‐ and eclogite‐grade rocks of the Kaghan Valley. In contrast, the cover rocks of the Nanga Parbat Haramosh Massif were not imbricated or exhumed at this time, remaining buried beneath the Kohistan‐Ladakh Island Arc until the syntaxis‐forming event that occurred in the last 10 Myr. The timing of tectonic events in the north‐western Himalaya differs from that experienced by the rocks of the Central Himalaya in that the earliest stage of burial in the NW Himalaya predates that of the Central Himalaya by c. 6 Myr. This difference may result from the diachronous nature of the Indo‐Asian collision or may simply be a reflection of differing timing at different structural levels.  相似文献   

9.
The Kohistan Arc Complex is an integral part of the NW Himalayan collision system and is bounded by two major suture zones, the Indus Suture Zone (ISZ) and the Northern Suture in the south and north respectively. Fission‐track analyses on samples collected along the Indus River across the arcuated ISZ in the Besham region are presented here. The footwall yields zircon and apatite fission‐track (FT) ages of ∼23 Ma and ∼3.7 Ma respectively; the hanging wall ages range from 24 to 42 Ma for zircon and ∼10 Ma for apatite. Thus, the change in ISZ kinematics from thrusting to normal faulting was not later than Oligocene and normal faulting on this ISZ segment was still active at least into early Pliocene times. At this time normal faulting had already ended at other ISZ segments, but it was still (or again) active across the ISZ in the Besham region most likely as a local phenomenon caused by the growth of the Indus Syntaxis, a transverse antiform parallel to the Nanga Parbat Syntaxis.  相似文献   

10.
A sample of banded amphibolite from the western margin of the Nanga Parbat–Haramosh Massif as Sassi has been studied using microstructural and 40Ar/39Ar laserprobe techniques to investigate the relationship between deformation and argon isotope variations in a natural system. Amphibolite-grade deformation occurred during south-directed overthrusting of the Kohistan arc over India along the Main Mantle Thrust and was overprinted by extensional reactivation of the earlier fabric and the formation of biotite-rich shear zones. Subsequent deformation along discrete fine-grained fault zones was characterised by the formation of scapolite, chlorite and K-feldspar, early plastic deformation and later cataclasis. Different minerals developed during this history show a wide range in apparent 40Ar/39Ar ages. Biotite, chlorite and scapolite exhibit much lower concentrations of excess argon, indicating their equilibration in a fluid relatively poor in excess argon. A `true' age of ca. 8 Ma from biotite represents a minimum age for deformation associated with formation of the Nanga Parbat Syntaxis and also precludes Pliocene metamorphism in this area of the syntaxis. Both high- and low-closure temperature minerals (amphiboles and feldspars) record apparent ages which are associated with the incorporation of excess argon within the mineral lattice. Although differential thermal resetting of minerals at different closure temperatures is important, variations in the inherited 40Ar/36Ar ratio throughout the sample is dominated by deformation and fluid infiltration. Consequently it appears that within deforming metamorphic rocks, areas with significantly different argon isotope compositions may be present and need not be homogenised by diffusion. Received: 6 July 1994 / Accepted: 24 December 1996  相似文献   

11.
The largest earthquake (Mw 8.4 to 8.6) in Himalaya reported so far occurred in Assam syntaxial bend in 1950. However, some recent studies have suggested for earthquake of magnitude Mw 9 or more in the Himalayan region. In this paper, we present a detailed analysis of seismological data extending back to 1200 AD, and show that earthquake in Himalayan region may not be expected to be as large as those of subduction zones. Also, there appears to be a lateral variation in the earthquake magnitude, being lesser in the western syntaxial bend when compared close to the eastern syntaxial bend. This is attributed to the difference in the plate boundary scenario; dominance of strike-slip and thrusting along the western syntaxis as against thrusting and remnant subduction along the eastern syntaxis.  相似文献   

12.
The present study describes results obtained from the chemistry of detrital heavy minerals i.e. pyroxene, amphibole, biotite, garnet, epidote and Fe-Ti oxides in fluvial sediments of the northern Brahmaputra River (Bangladesh) with an aim to determine conditions of their petrogenesis and provenance. The primary and secondary genera of ferromagnesian minerals occurred in calc-alkaline and peraluminous subduction zone. In which, the garnets are Fe-rich, indicating mostly almandine component (Alm65–Pyp16–Grs8–Sps6 averagely), occurred in medium to high grade metasedimentary rocks in the Lesser Himalaya (LH), along the Main Central Thrust (MCT) and the eastern Himalayan syntaxis. Besides, the fingerprint of omphacite and actinolite owe to ascertain the co-existence of garnet developed in ultrahigh-pressure (UHP) eclogites that may also be drained from the Tso Morari massif. Augite to aegirine-augite pyroxenes emphasizes Fe enrichment in basaltic systems and high to ultrahigh grade metamorphic rocks, which are exposed in the LH, Shillong Plateau, Mikir Hills, South Tibetan Detachment System (STDS), eastern Himalayan syntaxis and Tso Morari massif. Geochemistry and thermobarometry of the primary magmatic amphiboles and biotites manifest the source of granitoid and granodiorite like bodies, and their windows are exposed in the Bomi–Chayu, Gangdese arcs and the western Arunachal Himalaya. Again, metamorphosed Fe-Ti oxide minerals are well-exposed along the NE Lesser Himalaya, where magmatic derivative of Fe-Ti oxide minerals were modified through the diffusional processes in low-grade metamorphism (534–562 °C with 10–22.1–10?21.5 fo2). Integrating the aforementioned discussion with the thermochronology, it is evident that the eastern Himalayan syntaxis is the major source of sediment flux, which is carried mostly by the upper Himalayan tributaries i.e. Yigong, Parlung, Dibang and Lohit. Also, the lower Himalayan tributaries i.e. Subansiri and Manas drain the sequestered derivatives dominantly from the Arunachal Himalayan. Tso Morari eclogites (NW Himalaya) have also contribution somewhat of dense minerals to the Tsangpo-Brahmaputra River system. Thus, scrutinizing the fingerprint of single-grain detrital minerals provides key information regarding the source terrains and tectonics of the Himalayan sequences.  相似文献   

13.
大别地块自晚元古代以来主要经受了自北而南的推挤,并且发生了两次较强烈的南移运动,造成了地块前线逆冲滑脱构造体系。特别是中生代的推挤和滑移,不仅构造变形强烈,而且还伴有热事件,大别地块东南缘郯-庐断裂南延部分和广济-宿松平移-推覆型韧性剪切带均是"热线构造",它们提供了深层次岩浆活动的通道。本区岩石以绿片岩-角闪岩相变质岩为主,含金背景值高,逆冲滑脱构造和韧性剪切带的活动与金元素的活化、迁移和富集创造了良好的条件。  相似文献   

14.
METAMORPHISM IN THE LESSER HIMALAYAN CRYSTALLINES AND MAIN CENTRAL THRUST ZONE IN THE ARUN VALLEY AND AMA DRIME RANGE (EASTERN HIMALAYA)1 BrunelM ,KienastJR . tudep啨tro structuraledeschevauchementsductileshimalayenssurlatrans versaledel’Everest Makalu (N啨paloriental) [J].CanadianJ .EarthSciences,1986 ,2 3:1117~ 1137. 2 LombardoB ,RolfoF .TwocontrastingeclogitetypesintheHimalayas :implicationsfortheHimalayanorogeny…  相似文献   

15.
Catastrophic flooding of parts of the frontal plains of the Pakistan Himalayas has occured throughout the historical past. The largest recorded flood (1841) originated from an earthquaketriggered landslip from the flanks of Nanga Parbat, which blocked the Indus river for six months. The earthquake probably occurred on the Liachar thrust, which has been responsible for uplifting the amphibolite facies Nanga Parbat gneisses to the Earth's surface in the last 10 million years. These movements raise serious problems for hydroelectric engineering project in this and other active mountain belts.  相似文献   

16.
The eastern Himalayan syntaxis in Namjagbarwa is a high-grade metamorphic terrain formed by the India-Eurasia collision and northward indentation of the Indian continent into Asia. Right- and left-lateral slip zones were formed by the indentation on the eastern and western boundaries of the syntaxis respectively. The Dongjug-Mainling fault zone is the main shear zone on the western boundary. This fault zone is a left-lateral slip belt with a large component of thrusting. The kinematics of the fault is consistent with the shortening within the syntaxis, and the slipping history along it represents the indenting process of the syntaxis. The Ar-Ar chronological study shows that the age of the early deformation in the Dongjug-Mainling fault zone ranges from 62 to 59 Ma. This evidences that the India-Eurasia collision occurred in the early Paleocene in the eastern Himalayan syntaxis.  相似文献   

17.
青藏高原东缘旋转变形机制的数值模拟   总被引:1,自引:0,他引:1  
在印度板块与欧亚板块的碰撞作用下,青藏高原受到华南块体、鄂尔多斯块体等不同程度的阻挡,引起高原的整体隆升。青藏高原东南缘发生物质向南"逃逸",青藏高原东缘现今的地壳运动表现为围绕青藏高原东构造结发生顺时针的旋转。针对青藏高原东缘的旋转变形特征,基于以大型活动断裂为界的块体构造模型,利用粘弹性接触单元有限元模拟,分析了控制青藏高原东缘旋转变形的动力学环境,模拟的GPS速度与实测GPS速度能够较好的地吻合,构造应力场分布特征和活动断层的性质也能够较大程度地吻合,模拟过程采用的边界及其代表的动力学环境表明,青藏高原东缘整体受控于印度板块的持续碰撞和稳定的华南板块的阻挡,在下地壳的拖曳和重力作用下,青藏高原物质从南部边界"逃逸"。在"逃逸"过程中,受印度板块斜向俯冲作用的影响,沿实皆断裂缅甸板块对巽他板块的剪切拉升作用是形成围绕喜马拉雅东构造结的旋转运动和地壳变形的重要因素,也是青藏高原东南缘旋转活动构造体系的主要影响因素之一。  相似文献   

18.
The Namche Barwa Complex (NBC) in the eastern Himalayan syntaxis, south Tibet, is generally interpreted as the north-eastern extremity of the exposed Greater Himalayan Sequence, comprising Neoproterozoic to early Paleozoic sedimentary strata along the northern margin of the Indian continent. Field and petrological investigations indicate that the NBC consists mainly of orthogneiss, paragneiss, amphibolites and calc-silicate rocks. U-Pb zircon data demonstrate that the protoliths of the orthogneiss formed during late Paleoproterozoic at ca. 1610 Ma and also in early Paleozoic at ca. 490-500 Ma. The amphibolites were derived from mafic magmatic rocks formed during 1645 to 1590 Ma. Zircons in the paragneisses have highly variable inherited zircon ages ranging from the Neoarchean to early Paleozoic, with four major age populations of 2490 Ma, 1640 Ma, 990 Ma and 480 Ma. The calc-silicate rock has zircons with early Paleozoic metamorphic age of 538 Ma. Almost all the rocks of the NBC have been metamorphosed during Cenozoic with the metamorphic zircon U-Pb ages ranging from 8 to 30 Ma and a peak at 23 Ma. These, together with previous results suggest that the NBC was originally derived from an Andean-type orogeny following the Columbia supercontinent assembly, and experienced multiple reworking during the Grenvillian, Pan-African and Himalayan orogenies. We conclude that the NBC in the eastern Himalayan syntaxis was derived from different provenance and tectonic setting as compared to those of the Greater Himalayan Sequence which constitutes the high-grade metamorphic core of the western and central Himalayan orogenic belt. We thus infer that the NBC was originally part of the eastern segment of the Central Indian Tectonic Zone.  相似文献   

19.
TWO SUITES OF OPHIOLITE RECOGNIZED IN THE MAQEN AREA, NORTHEASTERN TIBETAN PLATEAU1 JiangCF ,YangJS ,FengBG ,etal.OpeningandClosingTectonicsofKunlunMountains.Beijing :GeologicalPublishingHouse (inChinese) ,1992 . 2 XuZQ ,YangJS ,LiHB ,etal.TheA’nyemaqenSutureBeltandtheDynamicsinSubductionandCollision .TheStudyoftheOphioliteandGeodynamics[M ].(inChinese) .1996 .185~ 189. 3 YangJS ,XuZQ .TheA’nyemaqenOphioliteBeltEastKunlunMts.,NWChi…  相似文献   

20.
沿扬子地块西缘出露的一系列变质杂岩的构造性质及形成时代是分析华南地块大地构造属性的关键。这些杂岩均被初始为低角度的正断层所围限 ,具有变质核杂岩的构造性质 ,其剥露时间在177Ma左右。目前 ,对这一区域几个代表性杂岩体进行的系统的岩石学和地球化学分析表明 ,这是一套主体为与俯冲板块有关的岛弧型岩浆杂岩 ,其形成时代从 72 6~ 86 4Ma ,时间跨度在 10 0Ma以上。证明这些岩石的形成与地幔柱作用无关。上述结果与最近在Madagascar东北缘、Seychelles岛及印度的Malani的一条类似的变质岩浆杂岩带的地球化学与地质年代学研究结果完全吻合 ,这个构造带被解释为一条沿Mozambique洋东缘的巨大的向东俯冲的安第斯型俯冲 岩浆岛弧带。据此我们推测在Rodinia古大陆中 ,华南地块位于印度板块东北缘 ,其南东则可能与澳大利亚相接。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号