首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in sea surface temperature(SST), seawater oxygen isotope(δ 18 O sw), and local salinity proxy(δ 18 O sw-ss) in the past 155 ka were studied using a sediment core(MD06-3052) from the northern edge of the western Pacifi c Warm Pool(WPWP), within the fl ow path of the bifurcation of the North Equatorial Current. Our records reveal a lead-lag relationship between paired Mg/Ca-SST and δ 18 O during Termination II and the last interglacial period. Similarity in SST between our site and the Antarctic temperature proxy and in CO 2 profi le showed a close connection between the WPWP and the Antarctic. Values of δ 18 O sw exhibited very similar variations to those of mean ocean δ 18 O sw, owing to the past sea-level changes on glacial-interglacial timescale. Calculated values of δ 18 O sw-ss refl ect a more saline condition during high local summer insolation(SI) periods. Such correspondence between δ 18 O sw-ss and local SI in the WPWP may refl ect complex interaction between ENSO and monsoon, which was stimulated by changes in solar irradiance and their infl uence on the local hydrologic cycle. This then caused a striking reorganization of atmospheric circulation over the WPWP.  相似文献   

2.
1 INTRODUCTION δ13C in organic matters from lacustrine sedi- ments varies with several factors including aquatic plants, vegetation type in the catchment, atmos- pheric CO2 concentration, climate (temperature and precipitation), and properties of water, …  相似文献   

3.
Although the mid-late Holocene cold and dry event about 4000 years ago(the 4 ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluate the oceanic response to this event in terms of a Holocene sea surface temperature(SST) record reconstructed using the K'37U index for Core B3 on the continental shelf of the East China Sea. The record reveals a large temperature drop of about 5℃ from the mid-Holocene(24.7℃ at 5.6 ka) to the 4 ka event(19.2℃ at 3.8 ka). This mid-late Holocene cooling period in Core B3 correlated with(i) decreases in the East Asia summer monsoon intensity and(ii) the transition period with increased El Nino/Southern Oscillation activities in the Equatorial Pacific. Our SST record provides oceanic evidence for a more global nature of the mid-late Holocene climate change, which was most likely caused by a southward migration of the Intertropical Converge Zone in response to the decreasing summer solar insolation in the Northern Hemisphere. However, the large SST drop around Core B3 indicates that the mid-late Holocene cooling was regionally amplified by the initiation/strengthening of eddy circulation/cold front which caused upwelling and resulted in additional SST decrease. Upwelling during the mid-late Holocene also enhanced with surface productivity in the East China Sea as reflected by higher alkenone content around Core B3.  相似文献   

4.
Using a coccolith weight analytic software (Particle Analyser), we analyze most abundant coccolith species in a sediment core from the central Western Pacific Warm Pool (WPWP) and calculate coccolith size and weight variations over the last 200 ka. These variations are compared with the trends of sea surface temperature (SST), primary productivity (PP), sea surface salinity (SSS), and insolation. Our results demonstrate that the size and weight of the coccoliths varied in response to variations of these factors, and their average total weight is primarily related to the relative abundance of the dominant species GEO (Gephyrocapsa oceanica). The variation in weight of EMI (Emiliania huxleyi) and GEE (Gephyrocapsa ericsonii) are mainly influenced by nutrients, and the variation of GEM (G. muellerae conformis) and GEO (G. oceanica) weight are mainly influenced by SST. For all of the taxa weight, PP and SST present apparent precession or semi-precession cycles, we consider that the mono-coccolith weight of the Equatorial Western Pacific is primarily affected by precession drived thermocline and nutricline variation.  相似文献   

5.
A modified lower trophic ecosystem model (NEMURO) is coupled with a three-dimensional hydrodynamic model for an application in the central Yellow Sea. The model is used to simulate the horizontal distributions and annual cycles of chlorophyll-a and nutrients with results consistent with historical observations. Generally, during the winter background and spring bloom periods, the exchange with neighboring waters constitutes the primary sources of nutrients. Howerver, during the winter background period, the input of silicate from the layer deeper than 50 m is the most important source that contributes up to 60% to the total sources. During the spring bloom period, the transport across the thermocline makes significant contribution to the input of phosphate and silicate. During the post spring bloom period, the relative contribution of relevant processes varies for different nutrients. For ammonium, atmospheric deposition, excretion of zooplankton and decomposition of particulate and dissolved nitrogen make similar contributions. For phosphate and silicate, the dominant input is the transport across the thermocline, accounting for 62% and 68% of the total sources, respectively. The N/P ratio averaged annually and over the whole southern Yellow Sea is up to 51.8, indicating the potential of P limitation in this region. The important influence of large scale sea water circulation is revealed by both the estimated fluxes and the corresponding N/P ratio of nutrients across a section linking the northeastern bank of the Changjiang River and Cheju Island. During the winter background period, the input of nitrate, ammonium, phosphate and silicate by the Yellow Sea Warm Current is estimated to be 4.6×1010, 2.3×1010, 2.0×109 and 1.2×1010 mol, respectively.  相似文献   

6.
A 700-year record (1.0–1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS14C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite δ18O record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324–1 986 cm/ka) between 5.9–5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.  相似文献   

7.
Data on the distribution of dissolved inorganic carbon (DIC) were obtained from two cruises in the North Yellow Sea (NYS) and off the Qingdao Coast (QC) in October, 2007. Carbonate parameters were calculated. The concentrations of DIC are from 1.896–2.229 mmolL−1 in the NYS and from 1.939–2.032 mmolL−1 off the QC. In the southwest of the NYS, DIC in the upper layers decreases from the north of the SP (Shandong Peninsula) shelf to the center of the NYS; whereas in the lower layers DIC increases from the north of the SP shelf to the center of the NYS and South Yellow Sea. In the northeast of the NYS, DIC in all layers increases from the YR (Yalu River) estuary to the centre of the NYS. The distribution of DIC in NYS can be used as an indicator of Yellow Sea Cold Water Mass (YSCWM). Air-sea CO2 fluxes were calculated using three models and the results suggest that both the NYS and the QC waters are potential sources of atmospheric CO2 in October.  相似文献   

8.
Measurements of pH,total alkalinity(TA),partial pressure of CO2(pCO2) and air-sea CO2 flux(FCO2) were conducted for the inner continental shelf of the East China Sea(ECS) during August 2011.Variations in pCO2 distribution and FCO2 magnitude during the construction of the Three Gorges Dam(TGD)(2003-2009),and the potential effects of the TGD on the air-sea CO2 exchange were examined.Results showed that the ECS acts as an overall CO2 sink during summer,with pCO2 ranging from 107 to 585 μatm and an average FCO2 of-6.39 mmol/(m2·d).Low pCO2(<350 μatm) levels were observed at the central shelf(28°-32°N,123°-125.5°E) where most CO2-absorption occurred.High pCO2(>420 μatm) levels were found in the Changjiang estuary and Hangzhou Bay which acted as the main CO2 source.A negative relationship between pCO2 and salinity(R2=0.722 0) in the estuary zone indicated the predominant effect of the Changjiang Diluted Water(CDW) on the seawater CO2 system,whereas a positive relationship(R2=0.744 8) in the offshore zone revealed the influence of the Taiwan Current Warm Water(TCWW).Together with the historical data,our results indicated that the CO2 sink has shown a shift southwest while FCO2 exhibited dramatic fluctuation during the construction of the TGD,which is located in the middle reaches of the Changjiang.These variations probably reflect fluctuation in the Changjiang runoff,nutrient import,phytoplankton productivity,and sediment input,which are likely to have been caused by the operations of the TGD.Nevertheless,the potential influence of the TGD on the CO2 flux in the ECS is worthy of further study.  相似文献   

9.
To decipher the sedimentary evolution and environmental changes since the late Last Deglaciation, two gravity cores were analyzed from the western North Yellow Sea (NYS). The two cores (B-L44 and B-U35) were sampled for grain size, clay minerals, detrital minerals, and 14C dating. They are comparable in lithofaies, and the observed succession was divided into four depositional units based on lithology and mineral assemblages, which recorded the postglacial transgression. Depositional unit 4 (DU 4) (before 11.5 ka) was characterized with enrichment in sand, and was interpreted as nearshore deposits in shallow water during the Younger Dryas Event. DU 3 (11.5-9.6 ka) displayed a fining-upward succession composed of sediments from local rivers, such as the Huanghe (Yellow) River, and from coastal erosion, which clearly were related to the Early Holocene transgression. Stable muddy deposition (DU 2) in NYS began to form at about 9.6 ka, which received direct supply of fine materials from the Shandong subaqueous clinoform. It is believed that the Yellow Sea circulation system played a major role in controlling the formation of fine sediment deposition in DU 1 (after 6.4 ka) after the sea level maximum.  相似文献   

10.
Spectrometry of ~(238)U, ~(234)U, ~(230)Th and, ~(232)Th in three Okinawa Trough cores showed that, based on the~(230)Th/~(232)Th activity ratio, the sedimentation rates were about 2.5 cm/ka, 2.8 cm/ka and 8.5 cm/ka respectivelyduring the Holocene and about 20.1 cm/ka, 12.29 cm/ka, 8.8 cm/ka and 12.6 cm/ka respectively during theWurm glacial. To examine the past global climatic and oceanographic changes, the stable oxygen isotopesδ~(18)O and CaCO_3 were measured. The Th content and Th/U ratio showed that variations of terrigenous materialinput from the continental shelf were associated with glacial and interglacial changes and sea level  相似文献   

11.
ISOTOPICEVIDENCEFORHOLOCENECLIMATICCHANGESINBOSTENLAKE,SOUTHERNXINJIANG,CHINAZhongWei(钟巍)XiongHeigang(熊黑钢)DepartmentofGeograp...  相似文献   

12.
Based on the δ13C and δ18O fluctuation of lacustrine carbonate, CaCO3 content and sporo-pollen data, a palaeoclimatic history of Bosten Lake during the Holocene has been outlined, several stages of climatic changes are divided, and the following result es are obtained: (1) Palaeoclimatic changes revealed by carbonate isotope around Bosten Lake are basically identical with that revealed by other geological records in Xinjiang. Environmental changes presented apparent Westlies Style model: during cold period, relative humidity increased, δ18O, δ13C and CaCO3 appeared low; but in warm periods, the dry regime aggravated. (2) The temperature reflected by δ18O exist evident features being increase in the late period during the Holocene. Together with the δ13C, pollen and CaCO3 analyses, several cold and warm phases which are of broad regional significance can be identified. The warm peaks occurred at about 11.0 ka B.P., 9.4 ka B.P., 7.5 ka B.P., 5.0 ka B.P., 3.0 ka B.P. and 2.0 ka B.P.; the cold peaks at 11.5 ka B.P., 10.5 ka B.P., 8.8 ka B.P., 5.5 ka B.P., 3.3 ka B.P., 2.2 ka B.P. and 1.5 ka B.P.. (3) Several climatic events with the nature of “abrupt climatic changes” are revealed in the periods of 11.0 ka B.P. −10.5 ka B.P., 9.4 ka B.P. −8.8 ka B.P., 5.5 ka B.P. −5.0 ka B.P. and 2.0 ka B.P. −1.5 ka B.P.. (4) The results show that carbonate isotopic record of lacustrine sediment in arid area is very sensitive to climatic changes, and may be play a very important role in understanding the features and mechanism of palaeoclimatic changes.  相似文献   

13.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   

14.
The venerid clam (Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.  相似文献   

15.
Based on the authors‘ 1986 to 1994 sporo-pollen assemblage analysis in the southern Yellow Sea area, data from 3 main cores were studied in combination with ^14C, palaeomagnetic and thermoluminescence data. The evolution of the paleoclimate environments in the southern Yellow Sea since 15ka B.P. was revealed that, in deglaciation of the last glacial period, the climate of late glaciation transformed into that of postglaciation, accompanied by a series of violent climate fluctuations. These evolution events happened in a global climate background and related to the geographic changes in eastern China. We distinguished three short-term cooling events and two warming events. Among them, the sporo-pollen assemblage of subzone A1 showed some cold climate features indicating that a cooling event occurred at about 15 - 14ka. B .P. in early deglaciation. This subzone corresponds to the Oldest Dryas. In subzone A3 , many drought-enduring herbal pollens and some few pollens of cold-resistant Picea, Abies, etc. were found, which indicated that a cooling event, with cold and arid climate, occurred at about 12- 11ka. B.P. in late deglaciation. This subzone corresponds to the Younger Dryas. The sporo-pollen assemblage of zone B showed warm and arid climate features in postglaciation. Although the assemblage of subzone B2 indicated a cold and arid climate environment, the development of flora in subzone B2 climate was less cold than that in A3 . Subzone B2 indicated a cooling event which occurred at about 9ka B.P. in early Holocene. Subzone A2, with some distinct differences from subzone A1 and A3 , indicated a warming event which occurred at 14 - 13ka. B.P. and should correspond to a warming fluctuation. The sporo-pollen assemblage of zone C showed features of warm-moist flora and climate, and indicated a warming event which universally occurred along the coast of eastern China at 8 - 3ka B.P. in middle Holocene, and its duration was longer than that of any climate events mentioned above. This period was climatic optimum and belonged to an altithermal period in postglaciation.  相似文献   

16.
CARBON CYCLE OF MARSH IN THE SANJIANG PLAIN   总被引:1,自引:0,他引:1  
Peat~hisaprocessofbeinghelpfulfordecreasingtheincrementofopcontentintheair,whichiscausedbycombustionofdineralfuelsandhumanactivitiesinterrestrialecosystem.But,exploitingrnaxsh,eSPeCiallyPeatedtObefuels,impliesthatorgbocsubstanceaccUInulatedfroma~hereduringthepastthousandsofyearsisrapidlyOxidized.aamthemarShplaysanimPOrtantroleinthecycleofbiogaxhdristry.TheSanjiangPlainisalowplainformedbythecommonreactionoftheHeilongRiver,SonghuaherandWUSuliabover.Thetotalareais10.89X104klnZandmarsharea…  相似文献   

17.
Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.  相似文献   

18.
The ecological environment in the East China Sea (ECS) and the Yellow Sea (YS) has changed significantly due to sea-level rising and the Kuroshio incursion since the last deglaciation. In this study, biomarker records of core F10B from the mud area southwest off Cheju Island (MSWCI) were generated to evaluate phytoplankton productivity and community structure changes in response to environmental evolution during the last 14 kyr. The contents of diatom, dinoflagellate and haptophyte biomarkers (brassicasterol, dinosterol and C37 alkenones) display similar trends, with increasing phytoplankton productivity during the last 14 kyr due to the increased influences of the Kuroshio, and especially due to the eddy-induced upwelling during the late Holocene. On the other hand, the contents of terrestrial biomarkers (C28 +C30 +C32 n-alkanols) and terrestrial organic matter (TOM) proxies (TMBR’ and BIT) all reveal decreasing TOM input into the area around the sampling site for the 14 kyr, mostly due to sea-level rising. Phytoplankton biomarker ratios reveal a shift from a haptophyte-dominated community at 6.2–2.5 kyr BP to a diatom-dominated community at 2.5–1.45 kyr BP, likely caused by a stronger cold eddy circulation system at 2.5–1.45 kyr BP in the MSWCI.  相似文献   

19.
Surface water can be divided into three layers from top downward: surface microlayer (SML, thickness≤50 μm), subsurface layer (SSL, ≈25 cm) and surface layer (SL, 1–5m), among which the SML plays an important role on sea-air interaction because of its unique physical-chemical property. Carbon dioxide system including DIC (dissolved inorganic carbon), Alk (alkalinity), pH and pCO2 (partial pressure of CO2) in multilayered waters of the Yellow Sea was studied for the first time in March and May 2005. The results show that: DIC and Alk are obviously enriched in SML. The contents of DIC, Alk and pCO2 become lower in turn from SML, SSL to SL, higher in March and lower in May, whereas for pH it was opposite. The relationship between DIC and Alk is clearly positive, but negative between pH and pCO2. Meanwhile, pCO2 and temperature/salinity is also in positive relation, pCO2 decreases with latitude increase. DIC and Alk show a similar variation trend with the maximum at 02:00–03:00, but pH and pCO2 show an opposite pattern. In addition, the distribution patterns are similar to each other in the three layers. The Yellow Sea is shown to be a sink of atmospheric CO2 in spring by two methods: (1) comparing pCO2 in seawater and atmosphere; (2) turning direction of “pH-depth” curve. Calculation on the base of pCO2 data in SML in four models shows that carbon flux in spring in the area was about -6.96×106 t C.  相似文献   

20.
The physiological responses of Nitzschia palea Kvtzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (D!C) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO5 in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO5 and CO2. Although doubled CO2 level would enhance the biomass of N. patea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of IV. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号