首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

2.
The present study was undertaken with the objective to check effectiveness of spectral information divergence (SID) to develop spectra from image for crop classes based on spectral similarity with field spectra. In multispectral and hyperspectral remote sensing, classification of pixels is obtained by statistical comparison (by means of spectral similarity) of known field or library spectra to unknown image spectra. Though these algorithms are readily used, little emphasis has been placed on use of various spectral similarity measures to develop crop spectra from the image itself. Hence, in this study methodology suggested to develop spectra for crops based on SID. Absorption features are unique and distinct; hence, validation of the developed spectra is carried out using absorption features by comparing it with field spectra and finding average correlation coefficient r?=?0.982 and computed SID equivalent r?=?0.989. Effectiveness of developed spectra for image classification was computed by probability of spectral discrimination (PSD) and resulted in higher probability for the spectra developed based on SID. Image classification was carried out using field spectra and spectra assigned by SID. Overall classification accuracy of the image classified by field spectra is 78.30% and for the image classified by spectra assigned through SID-based approach is 91.82%. Z test shows that image classification carried out using spectra developed by SID is better than classification carried out using field spectra and significantly different. Validation by absorption features, effectiveness by PSD and higher classification accuracy show possibility of new approach for spectra development based on SID spectral similarity measure.  相似文献   

3.
从高光谱遥感影像提取植被信息   总被引:2,自引:0,他引:2  
遥感可以快速有效地监测大面积植被的种类、特性、长势等各类信息。高光谱遥感数据因其特有的高光谱分辨率特性使其在植被生态环境领域具有极大的应用潜力。植被信息作为生态环境评价的重要参数对区域生态环境的监测和建设具有重要的意义。本文基于云南省鹤庆县北衙的高光谱遥感数据用SAM方法对植被信息进行了提取,参考光谱使用ASD光谱辐射仪采集的植被光谱曲线。文中对高光谱遥感影像的辐射定标和大气校正进行了研究,针对影响光谱辐射仪采集的主要因素采取了相应的措施,并对光谱曲线分类及参考光谱曲线的选取进行了研究。将选取出的参考光谱曲线与大气校正后的遥感影像进行SAM匹配提取出植被信息,经过与实地调查资料比较并计算总体精度和kappa系数,计算结果达到预期精度。最后将分类结果转换为矢量图,经过投影转换为大地坐标后制作出北衙植被分布图。  相似文献   

4.
张亚平  张宇  杨楠  罗晓  罗谦 《测绘通报》2019,(12):60-64
为获得分类效果更优良的遥感图像分类方式并解决高光谱遥感图像分类运算速度缓慢的问题,集成Lanczos算法与谱聚类算法,探讨了高光谱遥感图像谱聚类算法应用于遥感图像分类的可行性,提出了一种面向高光谱遥感图像的快速谱聚类算法;通过对比美国圣地亚哥机场高光谱遥感图像K-均值算法与谱聚类算法的分类结果,发现面向高光谱遥感图像的谱聚类算法易于识别线性地物,且分类的速度能得到较大提升。  相似文献   

5.
This paper reports a series of laboratory and field measurements of spectral reflectance under artificial and natural light conditions which demonstrate that effects of natural chlorophyll fluorescence are observable in the reflectance red edge spectral region. These are results from the progress made to link physiologically-based indicators to optical indices from hyperspectral remote sensing in the Bioindicators of Forest Sustainability Project. This study is carried out on twelve sites of Acer saccharum M. in the Algoma Region, Ontario (Canada), where field measurements, laboratory-simulation experiments, and hyperspectral CASI imagery have been carried out in 1997, 1998, 1999 and 2000 campaigns. Leaf samples from the study sites have been used for reflectance and transmittance measurements with the Li-Cor Model 1800 integrating sphere apparatus coupled to an Ocean Optics Model ST1000 fibre spectrometer in which the same leaves are illuminated alternatively with and without fluorescence-exciting radiation. A study of the diurnal change in leaf reflectance spectra, combined with fluorescence measurements with the PAM-2000 Fluorometer show that the difference spectra are consistent with observed diurnal changes in steady-state fluorescence. Small canopies of Acer saccharum M. have been used for laboratory measurements with the CASI hyperspectral sensor, and under natural light conditions with a fibre spectrometer in diurnal trials, in which the variation of measured reflectance is shown experimentally to be consistent with a fluorescence signature imposed on the inherent leaf reflectance signature. Such reflectance changes due to CF are measurable under natural illumination conditions, although airborne experiments with the CASI hyperspectral sensor produced promising but less convincing results in two diurnal experiments carried out in 1999 and 2000, where small variations of reflectance due to the effect of CF were observed.  相似文献   

6.
高光谱遥感影像分类研究进展   总被引:4,自引:0,他引:4  
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。  相似文献   

7.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

8.
结合Gram-Schmidt变换的高光谱影像谐波分析融合算法   总被引:1,自引:0,他引:1  
张涛  刘军  杨可明  罗文杉  张育育 《测绘学报》2015,44(9):1042-1047
针对高光谱影像谐波分析融合(HAF)算法在影像融合时不顾及地物光谱曲线整体反射率这一缺陷,提出了结合Gram-Schmidt变换的高光谱影像谐波分析融合(GSHAF)改进算法。GSHAF算法可在完全保留融合前后像元光谱曲线波形形态的基础上,将高光谱影像融合简化为各像元光谱曲线的谐波余相组成的二维影像与高空间分辨率影像之间的融合。它是在原始高光谱影像光谱曲线被谐波分解为谐波余项、振幅和相位后,首先将其谐波余项与高空间分辨率影像进行GS变换融合,这样便可有效地修正融合后像元光谱曲线的反射率特征,随后再利用该融合影像与谐波振幅、相位进行谐波逆变换,完成高光谱影像谐波融合。本文最后利用Hyperion高光谱遥感影像与ALI高空间分辨率影像对GSHAF算法进行可行性分析,再以HJ-1A等卫星数据对其进行普适性验证,试验结果表明,GSHAF算法不仅可以完全地保留光谱曲线波形形态,而且融合后影像的地物光谱曲线反射率更接近真实地物。  相似文献   

9.
:光谱相似性测度用来衡量像元光谱的相似程度,是高光谱影像光谱匹配分类的重要工具之一,一般通过设置阈值判断像元光谱和参考光谱是否相似来进行分类。在此基础上,本文提出了一种多特征转换的高光谱影像自适应分类方法,实现了各种光谱相似性特征和分类器相结合的一种自适应分类。实验结果表明,本文提出的方法相比于传统的SVM方法,分类的总体精度更高,还可以避免部分传统光谱匹配分类方法中需要专家经验确定分类阈值的复杂过程。  相似文献   

10.
时间序列遥感影像常用于地表覆盖监测及其变化监测。然而,利用时序遥感数据—尤其是中分辨率遥感数据监测地表覆盖变化,其方法基本是先对多期影像分别进行监督分类然后对比分类结果。由于这种方法需要对每期遥感影像单独选择分类训练样本,而对于历史影像,常常难以获得可靠的样本数据。本文基于遥感数据定量化处理,尝试利用光谱特征扩展方法对时间序列Landsat数据进行分类:首先,结合一种新的大气校正方法和相对辐射归一化方法,对时间序列Landsat数据进行定量化处理,以消除各期影像之间的辐射差异,获得地表反射率数据。然后,论文选择一期易于获得分类训练样本的反射率数据作为"参考影像",并结合样本数据提取不同地表覆盖类型的光谱特征。最后,将"参考影像"中提取的地物光谱特征,扩展到所有时间序列反射率数据进行分类。论文利用青藏高原玛多地区的5景Landsat数据对本文的方法进行了验证,结果显示:基于光谱特征扩展的分类方法,可有效对定量化处理后的Landsat数据进行分类,分类总体精度为88.35%—94.25%,分类结果和传统的单景监督分类结果具有较好的一致性。此外,研究也发现,"参考影像"和待分类图像获取时间的季相差异会影响其分类的精度。  相似文献   

11.
Large-scale farming of agricultural crops requires on-time detection of diseases for pest management. Hyperspectral remote sensing data taken from low-altitude flights usually have high spectral and spatial resolutions, which can be very useful in detecting stress in green vegetation. In this study, we used late blight in tomatoes to illustrate the capability of applying hyperspectral remote sensing to monitor crop disease in the field scale and to develop the methodologies for the purpose. A series of field experiments was conducted to collect the canopy spectral reflectance of tomato plants in a diseased tomato field in Salinas Valley of California. The disease severity varied from stage 1 (the light symptom), to stage 4 (the sever damage). The economic damage of the crop caused by the disease is around the disease stage 3. An airborne visible infrared imaging spectrometer (AVIRIS) image with 224 bands within the wavelength range of 0.4–2.5 μm was acquired during the growing season when the field data were collected. The spectral reflectance of the field samples indicated that the near infrared (NIR) region, especially 0.7–1.3 μm, was much more valuable than the visible range to detect crop disease. The difference of spectral reflectance in visible range between health plants and the infected ones at stage 3 was only 1.19%, while the difference in the NIR region was high, 10%. We developed an approach including the minimum noise fraction (MNF) transformation, multi-dimensional visualization, pure pixels endmember selection and spectral angle mapping (SAM) to process the hyperspectral image for identification of diseased tomato plants. The results of MNF transformation indicated that the first 28 eigenimages contain useful information for classification of the pixels and the rest were mainly noise-dominated due to their low eigenvalues that had few signals. Therefore, the 28 signal eigenimages were used to generate a multi-dimensional visualization space for endmember spectra selection and SAM. Classification with the SAM technique of plants’ spectra showed that the late blight diseased tomatoes at stage 3 or above could be separated from the healthy plants while the less infected plants (at stage 1 or 2) were difficult to separate from the healthy plants. The results of the image analysis were consistent with the field spectra. The mapped disease distribution at stage 3 or above from the image showed an accurate conformation of late blight occurrence in the field. This result not only confirmed the capability of hyperspectral remote sensing in detecting crop disease for precision disease management in the real world, but also demonstrated that the spectra-based classification approach is an applicable method to crop disease identification.  相似文献   

12.
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(http://www.msadc.cn[2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。  相似文献   

13.
利用独立分量分析的方法,从图像信号分离的角度出发,将每个波段像元的光谱特征看成是由相互独立的不同地物类型光谱信号混合而成。通过ETM^-遥感影像数据的分类试验,验证了该方法应用于多光谱遥感影像非监督分类的有效性。  相似文献   

14.
Spectral library search is emerging as a viable approach for material identification and mapping by reusing spectral knowledge gained from hyperspectral remote sensing across space and time. The potential of retrieving meaningful spectral material identifications in the presence of reflectance of spectra of various material types and with various similarity metrics has been assessed in this study. Test reflectance spectra of various vegetation, minerals, soils and urban material types are identified by searching through the composite reflectance spectral library obtained by combining various institutional reflectance spectral libraries. The accuracy of material identifications under various conditions: (i) in the presence of identical, similar and dissimilar spectra; (ii) in the presence of only identical and dissimilar spectra; and (iii) in the presence of only dissimilar spectra has been assessed with several similarity metrics. Results indicate the possibility of obtaining 100% accurate material identifications by library search if the spectral library contains identical spectra. However, the presence of a large number of similar spectra, despite the presence of identical spectra, is found to increase false positives, thereby reducing the accuracy of retrievals to 82% at best. Further, the accuracy of material identifications in the presence of similar spectra is similarity metric-dependent and varied from about 52% (obtained from Binary Encoding) to 82% (obtained from Normalized Spectral Similarity Score). Overall, results support the possibility of using independent reflectance spectral libraries for material identification while calling for robust spectral similarity metrics.  相似文献   

15.
小麦冠层理化参量的高光谱遥感反演试验研究   总被引:18,自引:0,他引:18  
以国产成像光谱仪所获高光谱遥感数据为基础,根据田间同步采样数据建立的基于反射光谱特征的小麦冠层生物物理和生物化学估计模型,实现了用航空高光谱遥感数据对田间小麦冠层理化参量的整体反演。结果表明:用高光谱遥感方法估计小麦冠层理化参量是可行的;以理化参数为“波段”的数字图像及其处理,为农学家以理化参量的空间分布及其差异解释作物产量空间分布差异和研究作物生态生理机理提供了新的手段。  相似文献   

16.
Development of a spectral library is a prerequisite for the higher order classification of satellite data and hyperspectral image analysis to map any ecosystem with rich diversity. In this study, sampling methodology, collection of field and laboratory spectral signatures and post-processing methodologies were investigated for developing an exclusive spectral library of mangrove species using hyperspectral spectroscopic techniques. Canopy level field spectra and leaf level laboratory spectra were collected for 34 species (25 true and 9 associated mangroves) from two different mangrove ecosystems of the Indian east coast. Post-processing steps such as removal of water vapour absorption bands, correction of drifts which occur due to the thermal properties of the instrument during data collection and smoothing of spectra for its further utilisation were applied on collected spectra. The processed spectra were then compiled as spectral library.  相似文献   

17.
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。  相似文献   

18.
徐锐  林娜  吕道双 《测绘工程》2018,(4):71-75,80
稀疏表示用于高光谱遥感影像分类多是基于像素层次来处理的。文中提出一种面向对象的高光谱遥感影像稀疏表示分类方法。首先从高光谱影像中提取4个波段组成标准的多波段影像,进行面向对象的影像分割;然后计算各对象在各波段上的光谱均值,并选取少量样本进行训练;最后利用基于Fisher字典学习的稀疏表示进行高光谱遥感影像的分类。实验结果表明,该方法可以利用较少的样本得到较好的分类效果,与基于像素层的稀疏分类相比较,分类精度与效率均有所提高,分类结果更接近真实地物,避免了零碎图斑。  相似文献   

19.
Recent advances in thermal infrared remote sensing include the increased availability of airborne hyperspectral imagers (such as the Hyperspectral Thermal Emission Spectrometer, HyTES, or the Telops HyperCam and the Specim aisaOWL), and it is planned that an increased number spectral bands in the long-wave infrared (LWIR) region will soon be measured from space at reasonably high spatial resolution (by imagers such as HyspIRI). Detailed LWIR emissivity spectra are required to best interpret the observations from such systems. This includes the highly heterogeneous urban environment, whose construction materials are not yet particularly well represented in spectral libraries. Here, we present a new online spectral library of urban construction materials including LWIR emissivity spectra of 74 samples of impervious surfaces derived using measurements made by a portable Fourier Transform InfraRed (FTIR) spectrometer. FTIR emissivity measurements need to be carefully made, else they are prone to a series of errors relating to instrumental setup and radiometric calibration, which here relies on external blackbody sources. The performance of the laboratory-based emissivity measurement approach applied here, that in future can also be deployed in the field (e.g. to examine urban materials in situ), is evaluated herein. Our spectral library also contains matching short-wave (VIS–SWIR) reflectance spectra observed for each urban sample. This allows us to examine which characteristic (LWIR and) spectral signatures may in future best allow for the identification and discrimination of the various urban construction materials, that often overlap with respect to their chemical/mineralogical constituents. Hyperspectral or even strongly multi-spectral LWIR information appears especially useful, given that many urban materials are composed of minerals exhibiting notable reststrahlen/absorption effects in this spectral region. The final spectra and interpretations are included in the London Urban Micromet data Archive (LUMA; http://LondonClimate.info/LUMA/SLUM.html).  相似文献   

20.
高光谱遥感影像丰富的光谱信息有利于深入挖掘目标的理化特性,精细识别不同目标间的细微差异。为了提高影像分类识别的精度与速度需要对光谱信息进行特征提取。基于核函数的判别分析能够在数据中提取非线性特征,本文将其应用到高光谱影像分类的特征提取中,并进行了最小距离分类实验取得理想结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号