首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The high sea-level stand during the mid-Holocene is a benchmark in mangrove dynamics along the north-east/south-east coast of Brazil and provides a reference point for landward and seaward mangrove migrations corresponding to changes in relative sea level (RSL). However, evidence of the impacts associated with RSL fall on the northern Brazilian coast is scarce. Multi-proxy data from the highest tidal flats of the Bragança Peninsula in northern Brazil revealed modern herbaceous areas were occupied by mangroves Rhizophora and Avicennia from ~6250 to ~5850 cal a bp , and only Avicennia between ~5850 and ~5000 cal a bp . The same tidal flats were vegetation-free between ~5000 and ~4300 cal a bp . A combination of a high sea-level stand (0.6 ± 0.1 m) at ~5000 cal a bp and a dry early–middle Holocene in the Amazon probably caused an increase in porewater salinity of tidal flats, which resulted in a mangrove succession from Rhizophora to Avicennia dominance. RSL fall accentuated this process, contributing to mangrove degradation between ~5000 and ~4300 cal a bp . RSL fall, and a wetter period over the past ~4300 cal a bp caused a mangrove migration from highest to lowest flats, followed by expansion of herbaceous vegetation on the highest flats.  相似文献   

2.
Based on six consistent radiocarbon dates from the isolation basins Grødheimsvatnet and Kringlemyr, we estimate a minimum deglaciation age for southern Karmøy, an island in outer Boknafjorden (south‐west Norway), of around 18 000 calibrated years before present (18k cal a bp ). We use microscopic phytoplankton, macrofossils, lithostratigraphic evidence and X‐ray fluorescence data to identify the isolation contacts in the basins, and date them to 17.52–17.18k cal a bp in Grødheimsvatnet [15.57 m above present mean sea level (MSL)] and 16.19–15.80k cal a bp in Kringlemyr (11.99 m above MSL). Combining these data with previous studies, we construct a relative sea‐level (RSL) curve from 18k cal a bp until the present, which is ~3 ka longer than any previous RSL reconstruction from southern Norway. Following deglaciation, southern Karmøy has experienced a net emergence of around 16–19 m, although with significant RSL fluctuations. This includes two RSL minima well below present MSL around ~13.8 and ~10k cal a bp , and two maxima that culminated around 5–7 m above MSL during the Younger Dryas and early to mid‐Holocene, respectively. Considering eustatic sea level and modelled gravitational deformation of the geoid, we estimate a net postglacial isostatic uplift of ~120 m. © 2019 John Wiley & Sons, Ltd  相似文献   

3.
A comprehensive observational database of Holocene relative sea-level (RSL) index points from northwest Europe (Belgium, the Netherlands, northwest Germany, southern North Sea) has been compiled in order to compare and reassess the data collected from the different countries/regions and by different workers on a common time–depth scale. RSL rise varies in magnitude and form between these regions, revealing a complex pattern of differential crustal movement which cannot be solely attributed to tectonic activity. It clearly contains a non-linear, glacio- and/or hydro-isostatic subsidence component, which is only small on the Belgian coastal plain but increases significantly to a value of ca 7.5 m relative to Belgium since 8 cal. ka BP along the northwest German coast. The subsidence is at least in part related to the Post-Glacial collapse of the so-called peripheral forebulge which developed around the Fennoscandian centre of ice loading during the Last Glacial Maximum. The RSL data have been compared to geodynamic Earth models in order to infer the radial viscosity structure of the Earth's mantle underneath NW Europe (lithosphere thickness, upper- and lower-mantle viscosity), and conversely to predict RSL in regions where we have only few observational data (e.g. in the southern North Sea). A very broad range of Earth parameters fit the Belgian RSL data, suggesting that glacial isostatic adjustment (GIA) only had a minor effect on Belgian crustal dynamics during and after the Last Ice Age. In contrast, a narrow range of Earth parameters define the southern North Sea region, reflecting the greater influence of GIA on these deeper/older samples. Modelled RSL data suggest that the zone of maximum forebulge subsidence runs in a relatively narrow, WNW–ESE trending band connecting the German federal state of Lower Saxony with the Dogger Bank area in the southern North Sea. Identification of the effects of local-scale factors such as past changes in tidal range or tectonic activity on the spatial and temporal variations of sea-level index points based on model-data comparisons is possible but is still complicated by the relatively large range of Earth model parameters fitting each RSL curve, emphasising the need for more high-quality observational data.  相似文献   

4.
Coastal change during the Mid- to Late Holocene at Luce Bay, South West Scotland, is examined using morphological, stratigraphic and biostratigraphical techniques supported by radiocarbon dating. Deglaciation left extensive sediments, providing a source for depositional coastal landforms. Glacio-isostatic uplift resulted in the registration of evidence for former relative sea levels (RSLs), which support the pattern of Holocene RSL change for the northern Irish Sea as determined by shoreline-based Gaussian trend surface models. The rate of RSL rise was rapid from before ca. 8600 to ca. 7800 cal a bp , but then slowed, changing by <3 m over the next 3000 years, a pattern reflected in the convergence of shorelines predicted in the models. By ca. 4400 cal a bp RSL was falling towards present levels. As these changes were taking place, coastal barriers developed and dunes formed across them. In the West of the Bay, a lagoon forming to landward of the barriers and dunes acted as a sediment sink for dune sand. Changes in the coastal landscape influenced the occupation of the area by early human societies. This study illustrates the value of combining an understanding of process geomorphology, RSL and archaeology in studies of coastal change.  相似文献   

5.
Holocene relative shore-level changes and development of the Ģipka palaeolagoon in the western Gulf of Riga are reconstructed using multiproxy analyses by combining litho-, biostratigraphical and chronological data with remote sensing and geophysical data. The results show the development of the Ģipka basin from the Ancylus Lake/Initial Litorina Sea coastal zone (before c. 9.1 cal. ka BP) to coastal fen (c. 9.1 to 8.4 cal. ka BP) and gradual development of the Litorina Sea lagoon (c. 8.4 to 4.8 cal. ka BP) and its transition to a freshwater coastal lake (c. 4.8 to 4.6 cal. ka BP), fen (c. 4.6 to 4.2 cal. ka BP), and river floodplain (since c. 4.2 cal. ka BP). The highest shorelines of the Ancylus Lake and Litorina Sea were mapped at an elevation of 12–11 and 9 m a.s.l., respectively. A new relative shore level (RSL) curve for the western Gulf of Riga was constructed based on RSL data from the Ģipka area and from nearby Ruhnu Island studied earlier. The reconstruction shows that the beginning of the last marine transgression in the western Gulf of Riga started at c. 8.4 cal. ka BP, and concurred with the 1.9 m RSL rise event recorded from the North Sea basin. Diatom analysis results indicate the existence of the Ģipka lagoon between c. 7.7 and 4.8 cal. ka BP, with the highest salinity c. 6.1 cal. ka BP. During the existence of the brackish lagoon, settlement sites of the Neolithic hunter–gatherer groups existed on the shores of the lagoon in the period c. 6.0 to 5.0 cal. ka BP.  相似文献   

6.
Framed into a robust stratigraphic context, multivariate analyses on the Holocene palaeobiological record (pollen, benthic foraminifers, ostracods) of the Po coastal plain (NE Italy) allowed the investigation of microtidal ecosystems variability and driving parameters along a 35-km-long land–sea transect. Millennial-scale ecosystem shifts are documented by coeval changes in the meiofauna, reflecting variations in organic matter–water depth (shallow-marine environments) and degree of confinement-salinity (back-barrier settings). In-phase shifts of vegetation communities track unsteady water-table levels and river dynamics in freshwater palustrine areas. Five environmental–ecological stages followed one another crossing four tipping points that mark changes in relative sea level (RSL), climate and/or fluvial regime. At the culmination of Mediterranean RSL rise, after the 8200 event, remarkable growth of peatlands took place in the Po estuary, while low accumulation rates typified the shelf. At the transgressive–regressive turnaround (~7000 cal a bp ), the estuary turned into a delta plain with tidally influenced interdistributary embayments. River flow regime oscillations after the Climate Optimum (post-5000 cal a bp ) favoured isolation of the bays and the development of brackish wetlands surrounded by wooded peatlands. The youngest threshold (~800 cal a bp ), which led to the establishment of the modern delta, reflects a major avulsion of the Po River.  相似文献   

7.
The Holocene paleoclimate of the Caucasus region is rather complex and not yet well understood: while existing studies are mainly based on pollen records from high-altitude and humid lowland regions, no records are available from the semi-humid to semi-arid south-eastern Caucasian lowlands. Therefore, this study investigated compound-specific δ2H and δ13C isotopes of leaf wax biomarkers from Holocene floodplain soils in eastern Georgia. Our results show that the leaf wax δ2H signal from the paleosols mostly reflects changes in the moisture source and its isotopic composition. Depleted δ2H values before ~8 cal ka bp change towards enriched values after ~5 cal ka bp and become again depleted after ~1.6 cal ka bp. This trend could be caused by Holocene changes of the isotopic compositions of the Black and eastern Mediterranean Sea, and/or by varying contribution of both moisture sources linked with the North Atlantic Oscillation. The leaf wax δ13C signal from the paleosols directly indicates varying local water availability and drought stress. Depleted δ13C values before ~8 and after ~5 cal ka bp indicate wetter local conditions with higher water availability, whereas more enriched values during the middle Holocene (~8 until at least 5 cal ka bp ) indicate drier conditions with increased drought stress.  相似文献   

8.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   

9.
The coastal zone of Norrbotten, northern Sweden, was gradually inundated by the Ancylus Lake following the retreating ice margin and forming a highest coastline approximately 210 m above the present sea level. The succeeding shore displacement is reconstructed based on lithological investigations and radiocarbon datings of identified isolation sequences from 12 cored lake basins. The highest lake basins, along with two basins above the highest shoreline, suggest ice-free conditions already at 10 500 cal. yr BP. This is at least 500 years earlier than previously thought and implies rapid ice-sheet break-up in the Gulf of Bothnia. The shore displacement (RSL) curve represents a forced regression of successively decreasing rate through the Holocene, from 9 m/100 yr to 0.8 m/100 yr. During the first 1000-1200 years, the isostatic uplift is exponentially declining, followed by a constant uplift rate from c. 9500 cal. yr BP to 5500-5000 cal. yr BP. The last 5000 years seem to be characterized by a low but constant rebound rate. The development of the Ancylus Lake stage of the Baltic may also be discerned in the Norrbotten RSL curve, suggesting that the chronology of the Ancylus Lake stages may have to be revised. The Littorina transgression is also reflected by the RSL curve shape. In addition, a series of early to mid-Holocene beach terraces were OSL-dated to allow for comparison with the 14C-dated shore displacement curve. Interpretations of these ages and their relation to former sea levels were clearly more problematic than the dating of the lake basin isolations.  相似文献   

10.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Baeteman, C., Waller, M. & Kiden, P. 2011: Reconstructing middle to late Holocene sea‐level change: A methodological review with particular reference to ‘A new Holocene sea‐level curve for the southern North Sea’ presented by K.‐E. Behre. Boreas, 10.1111/j.1502‐3885.2011.00207.x. ISSN 0300‐9483. A number of disciplines are involved in the collection and interpretation of Holocene palaeoenvironmental data from coastal lowlands. For stratigraphic frameworks and the assessment of relative sea‐level (RSL) change, many non‐specialists rely on existing regional models. It is, however, important that they are aware of major developments in our understanding of the factors controlling coastal change and of the potential sources of error in sea‐level reconstructions. These issues are explored through a critical evaluation of a new sea‐level curve presented by Behre (2003, 2007) for the southern North Sea. In contrast to most sea‐level curves published from this region over the last 20 years, the curve shows strong fluctuations that are interpreted as representing vertical movements of sea level. We present a detailed examination of the data used by Behre. From this analysis it is clear that many of the data points used are unsuitable for high‐resolution (centimetre or decimetre) sea‐level reconstruction. This paper also gives an overview of possible sources of error with respect to the age and altitude of sea‐level index points and of changes in our understanding of the processes that underpin the interpretation of the organic and occupation levels used as index points. The constraints on the spatial scale over which sea‐level reconstructions can be applied (changes in palaeotidal range and crustal movements) are also considered. Finally, we discuss whether the large‐amplitude centennial‐scale sea‐level fluctuations proposed by Behre can be reconciled with the known mechanisms of sea‐level change and other recent high‐resolution studies from this region. We conclude that such fluctuations are highly unlikely to be real features of the sea‐level history of the southern North Sea.  相似文献   

13.
In the transformation from tidal systems to freshwater coastal landscapes, plants act as eco-engineering species that reduce hydrodynamics and trap sediment, but nature and timing of the mechanisms of land creation along estuaries remains unclear. This article focuses on the Old Rhine estuary (The Netherlands) to show the importance of vegetation in coastal landscape evolution, predominantly regarding tidal basin filling and overbank morphology. This estuary hosted the main outflow channel of the river Rhine between ca 6500 to 2000 cal bp , and was constrained by peat during most of its existence. This study reconstructs its geological evolution, by correlating newly integrated geological data and new field records to varying conditions. Numerical modelling was performed to test the inferred mechanisms. It was found that floodbasin vegetation and resulting organic accumulation strongly accelerated back-barrier infill, by minimizing tidal influence. After tidal and wave transport had already sufficiently filled the back-barrier basin, reed rapidly expanded from its edges under brackish conditions, as shown by diatom analysis and datings. Reed growth provided a positive infilling feedback by reducing tidal flow and tidal prism, accelerating basin infilling. New radiocarbon dates show that large-scale crevassing along the Old Rhine River – driven by tidal backwater effect – only started as nutrient-rich river water transformed the floodbasin into an Alder carr in a next phase of estuary evolution. Such less dense vegetation promotes crevassing as sediments are more easily transported into the floodbasin. As river discharge increased and estuary mouth infilling progressed, crevasse activity diminished around 3800 to 3000 cal bp , likely due to a reduced tidal backwater effect. The insights from this data-rich Holocene study showcase the dominant role that vegetation may have in the long-term evolution of coastal wetlands. It provides clues for effective use of vegetation in vulnerable wetland landscapes to steer sedimentation patterns to strategically adapt to rising water levels.  相似文献   

14.
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
New relative sea-level (RSL) data constrain the timing and magnitude of RSL changes in the southern Isle of Skye following the Last Glacial Maximum (LGM). We identify a marine limit at ~23 m OD, indicating RSL ~20 m above present c. 15.1 ka. Isolation basin data, supported by terrestrial and marine limiting dates, record an RSL fall to 11.59 m above present by c. 14.2 ka. This RSL fall occurs across the time of global Meltwater Pulse 1A, supporting recent research on the sources of ice melting. Our new data also help to resolve some of the chronological issues within the existing Isle of Skye RSL record and provide details of the sub-Arctic marine environment associated with the transition into Devensian Lateglacial climate at c. 14.5 k cal a bp , and the timing of changes in response to the Loch Lomond Stadial climate. Glacio-isostatic adjustment (GIA) model predictions of RSL deviate from the RSL constraints and reflect uncertainties in local and global ice models used within the GIA models. An empirical RSL curve provides a target for future research.  相似文献   

16.
Here we present new relative sea-level (RSL) curves developed from Holocene-aged raised beaches along the southern Scott Coast of the western Ross Sea, Antarctica. Fifty-four dates of marine shells, seal skin and elephant seal remains incorporated within raised beaches during storms afford a chronology for these curves. All of the curves show the same pattern and timing of RSL change within a small range of error. The best-dated curve suggests that final unloading of grounded Ross Sea ice from the southern Scott Coast and McMurdo Sound region occurred shortly before 6500 14C yr BP. This age is consistent with glacial geological evidence that places deglaciation between 5730 and 8340 14C yr BP. Our data strongly suggest that grounding-line retreat of the Ross Sea ice sheet southward through the McMurdo Sound region occurred in mid- and late Holocene time. If this is correct, then rising sea level could not have driven ice recession to the present-day grounding line on the Siple Coast, because global deglacial sea-level rise was essentially accomplished by mid-Holocene time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
In West Greenland, early and mid Holocene relative sea level (RSL) fall was replaced by late Holocene RSL rise during the Neoglacial, after 4–3 cal. ka BP (thousand calibrated years before present). Here we present the results of an isolation basin RSL study completed near to the coastal town of Sisimiut, in central West Greenland. RSL fell from 14 m above sea level at 5.7 cal. ka BP to reach a lowstand of ?4.0 m at 2.3–1.2 cal. ka BP, before rising by an equivalent amount to present. Differences in the timing and magnitude of the RSL lowstand between this and other sites in West and South Greenland record the varied interplay of local and non‐Greenland RSL processes, notably the reloading of the Earth's crust caused by a Neoglacial expansion of the Greenland Ice Sheet (GIS) and the subsidence associated with the collapse of the Laurentide Ice Sheet forebulge. This means that the timing of the sea level lowstand cannot be used to infer directly when the GIS advanced during the Neoglacial. The rise in Late Holocene RSL is contrary to recently reported bedrock uplift in the Sisimiut area, based on repeat GPS surveys. This indicates that a belt of peripheral subsidence around the current ice sheet margin was more extensive in the late Holocene, and that there has been a switch from subsidence to uplift at some point in the last thousand years or so. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a reconstruction of the Holocene paleo-environment in the central part of Bangladesh in relation to relative sea-level changes 200 km north of the present coastline. Lithofacies characteristics, mangal peat, diatoms and paleophysiographical evidence were considered to reconstruct the past position and C-14 ages were used to determine the time of formation of the relative sea level during the Holocene. With standard reference datum, the required m.s.l. at the surface of five sections was calculated. The relative sea-level (RSL) curve suggests that Bangladesh experienced two mid-Holocene RSL transgressions punctuated by regressions. The curve shows an RSL highstand at approximately 7500 cal BP, although the height of this highstand could not be determined because the transgressive phase was observed in a bioturbated sand flat facies. The curve shows a regression of approximately 6500 cal BP, and the RSL was considerably lower, perhaps 1–2 m, than the present m.s.l. The abundant marine diatoms and mangrove pollens indicate the highest RSL transgression in Bangladesh at approximately 6000 cal BP, being at least 4.5 to 5 m higher than the modern m.s.l. After this phase, the relative sea level started to fall, and consequently, a freshwater peat developed at approximately 5980–5700 cal BP. The abundant mangrove pollens in the salt-marsh succession shows the regression at approximately 5500 cal BP, when it was 1–2 m higher than the modern sea level. The curve indicates that at approximately 5000 cal BP and onwards, the RSL started to fall towards its present position, and the present shoreline of Bangladesh was established at approximately 1500 cal BP and has not noticeably migrated inland since.  相似文献   

19.
Recent results indicate contrasting Holocene moisture histories at different elevations in arid central Asia (ACA). However, relatively little is known about Holocene temperature changes at different elevations. Here we report an independently dated peat brGDGTs-based MBT'5ME record from the Narenxia peatland (NRX) in the southern Altai Mountains. The record suggests a long-term warming trend since ~7.7 cal. kyr bp , with a warmer stage during ~7–5.5 cal. kyr bp , a cold stage during ~5.5–4 cal. kyr bp , and a warming trend over the last ~4 kyr. The long-term warming trend indicated by the NRX MBT'5ME record is largely consistent with Holocene temperature records from nearby sites covering an altitudinal range of ~1700–4100 m above sea level. This consistent long-term warming trend at different elevations differs from the long-term Holocene drying/wetting trends at high/low elevations of the Altai Mountains. We propose that the warming trend and consequent permafrost thawing at high elevations could have resulted in increased meltwater runoff, which would have contributed to the long-term wetting trend at low elevations. Our findings potentially provide an improved understanding of regional climate change and associated water resource availability, with implications for their possible future status.  相似文献   

20.
Integrated palaeoecological studies of two fiord sediment sequences in the province of Blekinge, SE Sweden, covering the time span 11,000–5000 cal BP, reveal the timing and the environment for the Ancylus Lake/Littorina Sea transition 9800–8500 cal BP. The first ingression of saline water into the Baltic Sea through the Danish Straits occurred earlier than formerly assumed. New evidence, particularly mineral magnetic and palaeobotanical analyses, demonstrate that on the general trend of the eustatically caused Littorina transgression several minor fluctuations of the water level can be identified between 8500 and 5000 cal years BP. A distinct regression phase around 8100 cal BP is correlated with the Greenland ice-core cold event dated to 8200 ice-core years BP. This is described as a regional climatic catastrophe for the Baltic Sea region. The coastal stratigraphy is compared with the offshore stratigraphy earlier studied. A tentative shore displacement curve for Early and Middle Holocene is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号