首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

With the continuous expansion of energy demand, the deep-water continental slope in the northern South China Sea has become one of the significant offshore oil and gas exploration regions. The frequent occurrence of marine geological hazards in this region, especially submarine landslides, can cause serious damage to engineering facilities. However, there have been few studies on the stability of the northern continental slope of the South China Sea; these studies mainly focused on a specific submarine slope or small-range evaluation, resulting in a lack of large-scale and quantitative understanding. Hence, considering the variation in the physical and mechanical properties of marine soils with depth, formulas for calculating the safety factor of submarine slopes by an infinite sliding model are established, and the factors affecting slope stability such as soil properties, slope gradient and horizontal seismic action are systematically investigated. Using GIS techniques, the terrain slope gradients and a historical seismic database of the northern South China Sea are obtained. Combined with soil mechanical parameters, a regional stability evaluation of the northern continental slope is carried out. Furthermore, the distribution of risk zones is given. On the whole, under strong seismic action, large-scale submarine slope instability occurs and must be highly considered when assessing risk. This achievement is of great significance to engineering sites, route selection and engineering risk assessment.  相似文献   

2.
海底滑坡作为常见的海洋地质灾害,对海洋油气工程安全产生巨大威胁。海床土体失稳引起滑坡体滑动,会对海底管道产生拖曳作用。基于计算流体动力学方法(CFD)建立海底滑坡体对管道作用的评估模型,采用H-B模型描述块状滑坡体并与试验比较验证,分析不同海床倾斜度滑坡对管道的作用并拟合表达式;研究了海底管道在滑坡作用下的力学响应,并采用极限状态方法开展海底滑坡作用下管道结构极限安全分析,探讨了管道埋地状态时的极限安全界限,建立滑坡作用下管道结构安全分析方法。研究表明:滑坡对管道作用力与海床倾角呈现正相关,而覆土层厚度对作用力影响较小;随着不排水抗剪强度的减小,允许的滑坡宽度和速度均增加,表明土体不排水抗剪强度与引起的拖曳力呈正相关;滑坡土体宽度对极限安全速度影响较大。  相似文献   

3.
The exploration and exploitation of marine georesources ordinarily disturbs the submarine soft clay surrounding construction areas and leads to a significant decrease in the shear strength of structured and sensitive clayey soils in submarine slopes. Under wave action, local slides can even trigger large-scale submarine landslides, which pose a serious threat to offshore infrastructure such as pipelines and footings. Therefore, accurately evaluating the stability of submarine sensitive clay slopes under wave-induced pressure is one of the core issues of marine geotechnical engineering. In this paper, a kinematic approach of limit analysis combined with strength reduction technique is presented to accurately evaluate the real-time stability of submarine sensitive clay slopes based on the log-spiral failure mechanism, where external work rates produced by wave-induced pressure on slopes are obtained by the numerical integration technique and then are applied to the work-energy balance equations. The mathematical optimization method is employed to achieve the safety factors and the critical sliding surfaces of submarine slopes at different time in a wave cycle. On this basis, the stability of submarine sensitive clay slopes under various wave parameters is systematically investigated. In particular, extreme wave conditions and special cases of slope lengths no more than one wavelength are also discussed. The results indicate that waves have some negative effects on the stability of submarine sensitive clay slopes.  相似文献   

4.
In nature, a slope stability is determined by the ratio of a sliding resistance to a slide force. The slide force of a marine deep-water continental slope is mainly affected by sediment mechanics properties, a topography, and a marine seismic. However, the sliding resistance is mainly affected by sedimentary patterns and a sedimentary stress history. Both of these are different from case to case, and their impact can be addressed when the data are organized in a geographic information system(GIS). The study area on the continental slope in Zhujiang River Mouth Basin in South China Sea provides an excellent opportunity to apply GIS spatial analysis technology for the evaluation of the slope stability. In this area, a continental slope topography and a three-dimension(3-D) topography mapping show a sea-floor morphology and the distribution of a slope steepness in good detail, and the sediment analysis of seabed samples and an indoor appraisal reveals the variability of a sediment density near the sea-floor surface. On the basis of the results of nine geotechnical studies of submarine study areas, it has worked out that an equivalent cyclic shear stress ratio is roughly between 0.158 and 0.933, which is mainly depending on the initial water content of sediment. A regional density, slope and level of anticipated seismic shaking information are combined in a GIS framework to yield a map that illustrates a continental slope stability zoning under the influencing factors in Zhujiang River Mouth Basin in the South China Sea. The continental slope stability evaluation can contribute to north resources development in the South China Sea, the marine functional zoning, the marine engineering construction and adjust measures to local conditions, at the same time also can provide references for other deep-water slope stability analysis.  相似文献   

5.
海底滑坡会对海洋工程结构物造成严重破坏。滑移速度和距离是量化和分析海底滑坡的两个重要参数。目前BING等计算方法在模拟水下土体流动方面存在局限性,因此通过建立考虑土体固结和侵蚀效应的控制方程,选用摩擦流变模型,采用SPH深度积分算法,对海底滑坡进行了模拟研究。对比不同水深、坡度、接触摩擦系数和侵蚀率条件下的滑移体的速度、高度、长度的时程曲线,整理了最大滑移距离和速度,讨论变化规律。研究成果可为海底滑坡灾害预警和海底管线路由选址提供技术参考。  相似文献   

6.
This paper applies, for the first time in offshore deepwater, a method based on geographic information systems for seafloor susceptibility assessment as a first approach to marine geohazard mapping in fluid leakage areas (slope instabilities, gas escapes, seabed collapses, pockmarks, etc.). The assessment was carried out in a known seabed fluid-flow province located on the Iberian margin of the Gulf of C??diz, Spain. The method (based on statistical bivariate analysis) creates a susceptibility map that defines the likelihood of occurrence of seafloor features related to fluid flow: crater-like depressions and submarine landslides. It is based on the statistical index (Wi) method (Van Westen in Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73?C84, 1997), in which Wi is a function of the cartographic density of seafloor features on ??factor maps??. The factors selected monitor the seafloor??s capability to store and transfer hydrocarbon gases and gravitational instability triggers: geology-lithology, gas hydrate stability zone thickness (temperature, pressure?Cwater depth and geothermal gradient), occurrence of diapirs, proximity to faults or lineaments, and slope angle of the seafloor. Results show that the occurrence of seafloor features related to fluid flow is highest where the factors ??gas source and storage?? and ??pathways of fluid escape?? converge. This means that they are particularly abundant over diapirs in contourite deposits, in the vicinity of faults, and inside theoretical gas hydrate stability fields thinned by warm undercurrents. Furthermore, the submarine landslides located on the Palaeozoic-Toarcian basement are not related to fluid leakage. This methodology provides helpful information for hazard mitigation in regional selection of potential drill sites, deep-water construction sites or pipeline routes. It is an easily applied and useful tool for taking the first step in risk assessment on a regional scale for vast areas where fluid leakage may be present, the geological model is known, and the geologically hazardous features have already been mapped.  相似文献   

7.
Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.  相似文献   

8.
如何快速而准确的识别并提取海底滑坡的特征形态信息一直是海洋工程地质、特别是深水工程地质评价中所关注的问题之一。本文根据滑坡后形成的地形形态,基于水深梯度求值运算的原理,通过Matlab编程建立了一种快速识别海底滑坡的方法。以南海北部陆坡白云深水区为例进行海底滑坡的识别,并利用浅地层剖面做验证,结果显示这一方法是可行的,其最大的优点是滑坡识别速度快,对于规模小且数量多的滑坡识别效率较高。通过实测数据进一步的分析表明:(1)阈值的选取对识别结果有明显影响,阈值的选取需要结合其他物探资料(如浅地层剖面和声呐影像)综合判断来确定;(2)水深数据的空间分辨率会影响滑坡识别结果的准确度,合适的空间分辨率会提高识别结果的准确性。  相似文献   

9.
海洋灾害地质因素中,虽然海底滑坡发生频率不高、但造成的灾害损失往往会较严重,斜坡的稳定性受众多因素综合影响,且各因素对斜坡稳定性的影响程度存在差异,其敏感性分析一直是国内外研究的重要内容。本文以曹妃甸深槽海底斜坡为研究对象,分析了水下斜坡稳定性的影响因素。应用滑坡稳定性分析软件Geo-Slope对黏聚力、内摩擦角、重度、坡度等内在敏感因素以及地震动参数、附加荷载和波高这3个外在敏感因素进行了单因素敏感性分析,认为内在因素中内摩擦角最为敏感,外在因素中地震动参数的敏感度最高。通过对水下斜坡稳定性影响因素及其敏感性分析,可为海底滑坡的防治规划提供依据。  相似文献   

10.
波致海底缓倾角无限坡滑动稳定性计算分析探讨   总被引:1,自引:1,他引:0  
波浪作用下海底无限坡滑动稳定性计算的极限平衡法中,忽略了坡体水平向应力状态的影响,为此,针对波浪作用下海底缓倾角无限边坡的特点,提出直接基于滑动面处土体应力状态的滑动稳定性计算方法(简称应力状态法),并分析了其适用范围。对具体算例的分析表明,应力状态法计算得出的安全系数大于极限平衡法的安全系数,且随着滑动面深度的增加、土体泊松比以及边坡坡角的增大,两种计算方法得出的安全系数的差异会逐渐增大;对于波浪作用下的海底缓倾角无限边坡,在失稳时极可能沿具有一定厚度的滑动带而不是单一的滑动面而滑动,且波致最大剪应力所在的深度,常常不是斜坡体最易失稳滑移的深度。  相似文献   

11.
Abstract

The uppermost continental slope in the western Gulf of Alaska, from southern Albatross Bank to Portlock Bank, includes two broad areas where large submarine landslides occur and one intervening area where they are absent. In the areas containing large slides, seismic reflection records show evidence for active nearsurface folding and consequent slope steepening, which is apparently the ultimate control on this sliding. Evidence is lacking for similar active steepening in the area containing no large slides, where slope gradients are relatively gentle. Relatively small, shallow slides, fundamentally different from the larger ones, occur in all three areas on slopes that are not necessarily actively steepening. These slides are probably stratigraphically controlled, with failure occurring along weak subsurface strata. Strong earthquakes and the related accelerations are probably responsible for the actual triggering of many of the large and small slides. As long as the tectonic setting remains as it is today, future large‐scale sliding should remain confined to the two broad areas in which it now exists. Relatively small‐scale and shallow sliding might occur in any of the three areas.  相似文献   

12.
The properties of marine sediments vary spatially, and the undrained shear strength of marine clay increases linearly with depth because of depositional processes and the effective overburden pressure. To evaluate the stability of submarine slope considering the spatial variability of soil strength, the random field discretized by the Karhunen-Loève expansion is combined with the limit equilibrium method to conduct reliability analysis. For simplicity, our physical model does not include many complexities such as the effects of excess pore water pressure on the stability of submarine slopes. Stability estimates of the infinite slope model, under both static and seismic loading, are made with three types of one-dimensional stationary or non-stationary random fields. The two-dimensional slope model is also analyzed, where the shear strength varies with the positions of the strips because of the discrete random-field function for the soil material. In submarine slope reliability analysis, the non-stationary random field of the linearly increasing soil strength is used, instead of the commonly used stationary one. To obtain the failure probability through Monte Carlo simulations, a novel response surface method based on Gaussian process regression is introduced to build the surrogate model. The computational efficiency is significantly increased, because there is a considerable reduction of calls of the deterministic analysis. Therefore, the proposed method makes the prediction of submarine landslides which are usually rare events with very small probabilities more efficient.  相似文献   

13.
Landslide processes on the western slope of the Kuril Basin were studied using bathymetry and seismic data obtained under the international KOMEX and SSGH projects. Slope areas containing landslides, landslide blocks and mass-transport deposits were distinguished. Large-scale landslides occupying an area of more than 100 km2 are located in such areas of open continental margins as the slopes of the North Hokkaido Marginal Plateau and Terpeniya Ridge. Landslide blocks up to 2 km in size and mass-transport deposits are located in submarine canyons and fans in Terpeniya Bay. The age of landslides has been estimated as Middle Pleistocene–Holocene. Landslides are most likely triggered by seismic activity and gas saturation of sediments. Subsequent slope failure seems quite probable within the study area, and landslides capable of generating tsunamis may occur.  相似文献   

14.
舟山群岛海域峡道密布,峡道边坡失稳现象普遍发育,规模不一。多发的水下滑坡对海底光缆、港口码头等海岸工程设施都有较大威胁。2012年12月,使用浅地层剖面仪对六横岛周边峡道区进行探测,划分出3个主要声学反射界面以及4个地层单元,上部3个地层为全新世沉积层。发现6处水下滑坡,分布于六横岛沿岸边坡及毗邻的潮流深槽边坡。滑坡结构均为整体性滑坡,部分具多级性。从滑坡体规模看,滑坡体体积介于1.6×105~2.7×107 m3之间,其中超大型滑坡2处、大型滑坡3处、中型滑坡1处。根据界面与滑坡体的相关性,推测水下滑坡均发生在距今2.5 ka以来的全新世晚期。  相似文献   

15.
海底斜坡稳定性受风暴潮、海底地震等诸多不确定因素影响,易发生失稳破坏,产生较大的海洋地质灾害。简要介绍海底斜坡稳定性分析方法,建立曹妃甸深槽典型斜坡计算模型,确定了模型计算的海底地形参数、地层结构参数、土体物理力学参数等指标,利用GEO-SLOPE斜坡分析软件进行海底斜坡稳定性定量计算,分析了工程建设前自然状态下以及在大规模工程建设后海底斜坡稳定性,并模拟分析了在大风浪和地震等极端条件下斜坡的稳定性,确定了海底斜坡失稳空间特征。首次采用数值计算对曹妃甸海底斜坡稳定性进行定量分析评价,可以为类似近海建设工程提供重要的参考作用。  相似文献   

16.
High-resolution and high-density 2-D multichannel seismic data, combined with high-precision multibeam bathymetric map, are utilized to investigate the characteristics and distribution of submarine landslides in the middle of the northern continental slope, South China Sea. In the region, a series of 19 downslope-extending submarine canyons are developed. The canyons are kilometers apart, and separated by inter-canyon sedimentary ridges. Numerous submarine landslides, bounded by headscarps and basal glide surfaces, are identified on the seismic profiles by their distorted to chaotic reflections. Listric faults and rotational blocks in head areas and compressional folds and inverse faults at the toes of the landslides are possibly developed. Three types of submarine landslides, i.e., creeps, slumps, and landslide complexes, are recognized. These landslides are mostly distributed in the head areas and on the flanks of the canyons. As the most widespread landslides in the region, creeps are usually composed of multiple laterally-coalesced creep bodies, in which the boundaries of singular component creep bodies are difficult to delineate. In addition, a total of 77 landslides are defined, including 61 singular slumps and 16 landslide complexes that consist of two or more component landslides. Statistics show that most landslides are of a small dimension (0.53–18.09 km² in area) and a short runout distance (less than 3.5 km). Regional and local slope gradients and rheological behavior of the displaced materials might play important roles in the generation and distribution of the submarine landslides. A conceptual model for the co-evolution of the canyons and the associated landslides in the study area is presented. In the model it is assumed that the canyons are initiated from gullies created by landslides on steeper sites of the continental slope. The nascent canyons would then experience successive retrogressive landsliding events to extend upslope; at the same time canyon downcutting or incision would steepen the canyon walls to induce more landslides.  相似文献   

17.
通过对路由区海域的海底地形、地貌、浅层沉积结构的探测及对其自然环境资料的综合分析,在中韩两国之间选择了一条条件最佳的光缆路线,并对其环境进行了全面分析与评价  相似文献   

18.
The coastal zone of Lourinhã (located in Central Portugal) is characterized by beach–cliff systems, where beaches are narrow and cliffs have notorious slope instability. These cliffs evolve by different types of landslides, which are one of the main sources of natural hazard and risk in this coastal region.In this work, aerial photo interpretation and a systematic field survey were performed in order to obtain an inventory of landslides of the following types: rotational slides, translational slides and debris flows. The entire coast was then split into 261 terrain mapping units. For each unit, landslide predisposing factors were derived and classified: cliff elevation, slope angle (maximum, mean and standard deviation), potential solar radiation, slope curvature (profile and plan), lithological units and geologic structure. The predictive susceptibility models were computed for each type of landslide using a bi-variate statistical method — the Information Value Method. The degree of fit and the predictive capacity of the models were assessed using the Effectiveness Ratio, the standard Receiver Operator Characteristic curves and the respective Area Under Curve.Results show that each landslide typology occurs in particular terrain conditions. Individual susceptibility models evidence better predictive capacity than susceptibility model for total landslides.  相似文献   

19.
Recently, the security and stability of submarine pipelines have attracted much attention in ocean engineering. In this paper, pipelines with a streamlined contour (wedge, airfoil, double-ellipse, and arc-angle hexagon) are designed in hopes of defending against the impact of submarine landslides, and the computational fluid dynamics (CFD) approach is used to investigate the interaction between submarine landslides and streamlined pipelines. The results show that the peak interactional force is more representative of the hazard level of pipelines imposed by submarine landslides. It is also found that the streamlined pipelines possess a significant advantage in reducing the drag force and lift force of landslide–pipeline interaction with a maximum lessening percentage of 66.32 and 40.17%, compared with a conventional circular pipeline. In addition, the influence of applying streamlined pipelines to engineering is briefly discussed, and the empirical equation for estimating the drag force and lift force of streamlined pipelines induced by landslides is recommended based on the numerical test results.  相似文献   

20.
This article presents a methodology developed to evaluate the instability of submarine slopes that extend over a large area. Special attention was paid to (1) the complex geometry (bathymetry) and the expanse of the slope, (2) the heterogeneity of the sediment, and (3) the distribution of the pore pressure. The safety factor was considered as a spatially varying quantity. The General Formulation (GLE, Fredlund and Krahn 1977), which fully satisfies equilibrium conditions, was used for evaluating the stability of the marine slope. The submarine slope failure, which occurred on 16 October 1979 during the construction of the new Nice airport, was studied in order to test the developed model. Geotechnical parameters were taken from experimental tests carried out by IFREMER on 19 cores extracted at different depths (from 27 m to 1300 m) (Cochonat, Bourillet, and Savoye, 1993; Mulder et al., 1994). Many scenarios were proposed in order to explain the cause of the Nice slope failure (Habib, 1994). In this article, two of those scenarios were tested. Simulation results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号