首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The key aspect of the ocean circulation off Peru?CChile is the wind-driven upwelling of deep, cold, nutrient-rich waters that promote a rich marine ecosystem. It has been suggested that global warming may be associated with an intensification of upwelling-favorable winds. However, the lack of high-resolution long-term observations has been a limitation for a quantitative analysis of this process. In this study, we use a statistical downscaling method to assess the regional impact of climate change on the sea-surface wind over the Peru?CChile upwelling region as simulated by the global coupled general circulation model IPSL-CM4. Taking advantage of the high-resolution QuikSCAT wind product and of the NCEP reanalysis data, a statistical model based on multiple linear regressions is built for the daily mean meridional and zonal wind at 10?m for the period 2000?C2008. The large-scale 10?m wind components and sea level pressure are used as regional circulation predictors. The skill of the downscaling method is assessed by comparing with the surface wind derived from the ERS satellite measurements, with in situ wind observations collected by ICOADS and through cross-validation. It is then applied to the outputs of the IPSL-CM4 model over stabilized periods of the pre-industrial, 2?×?CO2 and 4?×?CO2 IPCC climate scenarios. The results indicate that surface along-shore winds off central Chile (off central Peru) experience a significant intensification (weakening) during Austral winter (summer) in warmer climates. This is associated with a general decrease in intra-seasonal variability.  相似文献   

2.
Recent winter seasons have evidenced that global warming does not exclude the occurrence of exceptionally cold and/or snowy episodes in the Northern mid-latitudes. The expected rarefaction of such events is likely to exacerbate both their societal and environmental impacts. This paper therefore aims to evaluate model uncertainties underlying the fate of wintertime cold extremes over Europe. Understanding why climate models (1) still show deficiencies in simulating present-day features and (2) differ in their responses under future scenarios for the twentyfirst century indeed constitutes a crucial challenge. Here we propose a weather-regime approach in order to separate the contributions of large-scale circulation and non-dynamical processes to biases or changes in the simulated mean and extreme temperatures. We illustrate our methodology from the wintertime occurrence of extremely cold days in idealized atmosphere-only experiments performed with two of the CMIP5 climate models (CNRM-CM5 and IPSL-CM5A-LR). First we find that most of the present-day temperature biases are due to systematic errors in non-dynamical processes, while the main features of the large-scale dynamics are well captured in such experiments driven by observed sea-surface temperatures, with the exception of a generalized underestimation of blocking episodes. Then we show that uncertainties associated with changes in large-scale circulation modulate the depletion in cold extremes under an idealized scenario for the late twentyfirst century. These preliminary results suggest that the original methodology proposed in this paper can be helpful for understanding spreads of larger model-ensembles when simulating the response of temperature extremes to climate change.  相似文献   

3.
This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.  相似文献   

4.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

5.
A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere–ocean–sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland–Iceland–Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5–10 years, which translates into MOC anomalies propagating southward from the convection sites.  相似文献   

6.
Abstract

Key physical variables for the Northwest Atlantic (NWA) are examined in the “historical” and two future Representative Concentration Pathway (RCP) simulations of six Earth System Models (ESMs) available through Phase 5 of the Climate Model Intercomparison Project (CMIP5). The variables are air temperature, sea-ice concentration, surface and subsurface ocean temperature and salinity, and ocean mixed-layer depth. Comparison of the historical simulations with observations indicates that the models provide a good qualitative and approximate quantitative representation of many of the large-scale climatological features in the NWA (e.g., annual cycles and spatial patterns). However, the models represent the detailed structure of some important NWA ocean and ice features poorly, such that caution is needed in the use of their projected future changes. Monthly “climate change” fields between the bidecades 1986–2005 and 2046–2065 are described, using ensemble statistics of the changes across the six ESMs. The results point to warmer air temperatures everywhere, warmer surface ocean temperatures in most areas, reduced sea-ice extent and, in most areas, reduced surface salinities and mixed-layer depths. However, the magnitudes of the inter-model differences in the projected changes are comparable to those of the ensemble-mean changes in many cases, such that robust quantitative projections are generally not possible for the NWA.  相似文献   

7.
Using the output data of 20 coupled climate models used in IPCC AR4 and observational data from NCEP, the capability of the models to simulate the boreal winter climatology of the East Asian sea level pressure, 850-hPa wind, and surface air temperature; the decadal variations of the East Asian winter monsoon (EAWM) intensity and EAWM-related circulation, and the interdecadal variations of EAWM-related circulation are systematically evaluated. The results indicate that 16 models can weakly simulate the declining trend of the EAWM in the 1980s. More than half of the models produce relatively reasonable decadal variations of the EAWM-related circulation and the interdecadal differences of EAWM-related circulation between the boreal winters of 1960-1985 and 1986-1998, including the weakened Siberian high, Aleutian low, and East Asian trough, the enhanced Arctic oscillation and North Pacific oscillation, and a deepened polar vortex. It is found that the performance of the multi-selected-model ensemble in reproducing the spatial distribution of the variations is encouraging, although the variational amplitudes are generally smaller than the observations. In addition, it is found that BCCR-BCM2.0, CGCM3.1-T63, CNRM-CM3, CSIRO-MK3.0, GISS-ER, INM-CM3.0, and MRI-CGCM2.3.2 perform well in every aspect.  相似文献   

8.
The CNRM-CM5.1 global climate model: description and basic evaluation   总被引:4,自引:4,他引:0  
A new version of the general circulation model CNRM-CM has been developed jointly by CNRM-GAME (Centre National de Recherches Météorologiques—Groupe d’études de l’Atmosphère Météorologique) and Cerfacs (Centre Européen de Recherche et de Formation Avancée) in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The purpose of the study is to describe its main features and to provide a preliminary assessment of its mean climatology. CNRM-CM5.1 includes the atmospheric model ARPEGE-Climat (v5.2), the ocean model NEMO (v3.2), the land surface scheme ISBA and the sea ice model GELATO (v5) coupled through the OASIS (v3) system. The main improvements since CMIP3 are the following. Horizontal resolution has been increased both in the atmosphere (from 2.8° to 1.4°) and in the ocean (from 2° to 1°). The dynamical core of the atmospheric component has been revised. A new radiation scheme has been introduced and the treatments of tropospheric and stratospheric aerosols have been improved. Particular care has been devoted to ensure mass/water conservation in the atmospheric component. The land surface scheme ISBA has been externalised from the atmospheric model through the SURFEX platform and includes new developments such as a parameterization of sub-grid hydrology, a new freezing scheme and a new bulk parameterisation for ocean surface fluxes. The ocean model is based on the state-of-the-art version of NEMO, which has greatly progressed since the OPA8.0 version used in the CMIP3 version of CNRM-CM. Finally, the coupling between the different components through OASIS has also received a particular attention to avoid energy loss and spurious drifts. These developments generally lead to a more realistic representation of the mean recent climate and to a reduction of drifts in a preindustrial integration. The large-scale dynamics is generally improved both in the atmosphere and in the ocean, and the bias in mean surface temperature is clearly reduced. However, some flaws remain such as significant precipitation and radiative biases in many regions, or a pronounced drift in three dimensional salinity.  相似文献   

9.
In order to understand potential predictability of the ocean and climate at the decadal time scales, it is crucial to improve our understanding of internal variability at this time scale. Here, we describe a 20-year mode of variability found in the North Atlantic in a 1,000-year pre-industrial simulation of the IPSL-CM5A-LR climate model. This mode involves the propagation of near-surface temperature and salinity anomalies along the southern branch of the subpolar gyre, leading to anomalous sea-ice melting in the Nordic Seas, which then forces sea-level pressure anomalies through anomalous surface atmospheric temperatures. The wind stress associated to this atmospheric structure influences the strength of the East Greenland Current across the Denmark Strait, which, in turn, induces near-surface temperature and salinity anomalies of opposite sign at the entrance of the Labrador Sea. This starts the second half of the cycle after approximatively 10 years. The time scale of the cycle is thus essentially set by advection of tracers along the southern branch of the subpolar gyre, and by the time needed for anomalous East Greenland Current to accumulate heat and freshwater anomalies at the entrance of the Labrador Sea. The Atlantic meridional overturning circulation (AMOC) does not play a dominant role in the mode that is confined in the subpolar North Atlantic, but it also has a 20-year preferred timescale. This is due to the influence of the propagating salinity anomalies on the oceanic deep convection. The existence of this preferred timescale has important implications in terms of potential predictability of the North Atlantic climate in the model, although its realism remains questionable and is discussed.  相似文献   

10.
 We compared regional biases and transient doubled CO2 sensitivities of nine coupled atmosphere-ocean general circulation models (GCMs) from six international climate modeling groups. We evaluated biases and responses in winter and summer surface air temperatures and precipitation for seven subcontinental regions, including those in the 1990 Intergovernmental Panel on Climate Change (IPCC) Scientific Assessment. Regional biases were large and exceeded the variance among four climatological datasets, indicating that model biases were not primarily due to uncertainty in observations. Model responses to altered greenhouse forcing were substantial (average temperature change=2.7±0.9 °C, range of precipitation change =−35 to +120% of control). While coupled models include more climate system feedbacks than earlier GCMs implemented with mixed-layer ocean models, inclusion of a dynamic ocean alone did not improve simulation of long-term mean climatology nor increase convergence among model responses to altered greenhouse gas forcing. On the other hand, features of some of the coupled models including flux adjustment (which may have simply masked simulation errors), high horizontal resolution, and estimation of screen height temperature contributed to improved simulation of long-term surface climate. The large range of model responses was partly accounted for by inconsistencies in forcing scenarios and transient-simulation averaging periods. Nonetheless, the models generally had greater agreement in their sensitivities than their controls did with observations. This suggests that consistent, large-scale response features from an ensemble of model sensitivity experiments may not depend on details of their representation of present-day climate. Received: 9 September 1996 / Revised: 31 July 1997  相似文献   

11.
IPCC-type climate models have produced simulations of the oceanic environment that can be used to drive models of upper trophic levels to explore the impact of climate change on marine resources. We use the Spatial Ecosystem And Population Dynamics Model (SEAPODYM) to investigate the potential impact of Climate change under IPCC A2 scenario on Pacific skipjack tuna (Katsuwonus pelamis). IPCC-type models are still coarse in resolution and can produce significant anomalies, e.g., in water temperature. These limitations have direct and strong effects when modeling the dynamics of marine species. Therefore, parameter estimation experiments based on assimilation of historical fishing data are necessary to calibrate the model to these conditions before exploring the future scenarios. A new simulation based on corrected temperature fields of the A2 simulation from one climate model (IPSL-CM4) is presented. The corrected fields led to a new parameterization close to the one achieved with more realistic environment from an ocean reanalysis and satellite-derived primary production. Projected changes in skipjack population under simple fishing effort scenarios are presented. The skipjack catch and biomass is predicted to slightly increase in the Western Central Pacific Ocean until 2050 then the biomass stabilizes and starts to decrease after 2060 while the catch reaches a plateau. Both feeding and spawning habitat become progressively more favourable in the eastern Pacific Ocean and also extend to higher latitudes, while the western equatorial warm pool is predicted to become less favorable for skipjack spawning.  相似文献   

12.
The Mediterranean region is identified as one of the two main hot-spots of climate change and also known to have the highest concentration of cyclones in the world. These atmospheric features contribute significantly to the regional climate but they are not reproduced by the Atmosphere–Ocean General Circulation Models (AOGCM), due to their coarse horizontal resolution, which have recently been run in the frame of the 5th Climate Model Intercomparison Project. This article investigates the benefit of dynamically downscaling the Institut Pierre Simon Laplace (IPSL) AOGCM (IPSL-CM5) historical simulation by the weather and research forecasting (WRF) for the representation of the Mediterranean surface winds and cyclonic activity. Indeed, when considering IPSL-CM5 atmospheric fields, the dramatic underestimation of the cyclonic activity in the most cyclogenetic region of the world jeopardizes our ability to investigate in-depth the Mediterranean regional climate and trend in the context of global change. The WRF model shows remarkable skill to reproduce regional cyclogenesis. Indeed, cyclones occurrence is quasi-absent in IPSL-CM5 data but when applying dynamical downscaling their spatial–temporal variability is very close to the re-analysis. This is a clear benefit of dynamical downscaling in regions of strong topographic forcing. This “steady” source of forcing allows the production of lee cyclogenesis and the development of strong cyclones, whatever the quality of the large-scale circulation provided at the WRF’s boundaries by IPSL-CM5. However, dynamical downscaling still presents disadvantages as for instance the fact that large-scale inaccurate features of the IPSL-CM5 regional circulation are replicated by WRF due to the boundary controlled (small domain) simulation. The advantages and disadvantages of dynamical downscaling are thoroughly discussed in this paper revealing its importance for climate research, especially in the context of future scenarios and wind impacts.  相似文献   

13.
华东地区极端降水动力降尺度模拟及未来预估   总被引:1,自引:1,他引:0  
利用CMIP5(Coupled Model Intercomparison Project Phase 5)数据集中的全球模式IPSL-CM5A-LR及其嵌套的区域气候模式WRF(Weather Research and Forecasting),分别评估了模式对1981~2000中国华东区域极端降水指标的模拟能力,并讨论了RCP8.5排放情景下21世纪中期(2041~2060年)中国华东极端降水指标的变化特征。相比驱动场全球气候模式,WRF模式更好地再现了各个极端指数空间分布及各子区域降水年周期变化。在模拟区域气候特点方面,WRF模拟结果有所改进,并在弥补全球模式对小雨日过多模拟的缺陷起到了明显的作用。21世纪中期,华东区域的降水将呈现明显的极端化趋势。WRF模拟结果显示年总降雨量、年大雨日数、平均日降雨强度在华东大部分区域的增幅在20%以上;年极端降雨天数、连续5 d最大降水量的增幅在华东北部部分区域分别超过了50%和35%,同时最长续干旱日在华东区域全面增加;且变化显著的格点主要位于增加幅度较大的区域。未来华东区域会出现强降水事件和干旱事件同时增加的情况,降水呈现明显的极端化趋势,且华东北部极端化强于华东南部。  相似文献   

14.
In this study, the CNRM-CM5 model is shown to simulate too warm SSTs in the tropical Atlantic as most state-of-the-art CMIP5 models. The warm bias develops within 1 or 2 months in decadal experiments initialised in January using an observationally derived state. To better quantify the role of the atmospheric biases in initiating this warm SST bias, several sensitivity experiments have been performed. In a first set of experiments, the surface solar net heat flux sent to the ocean model is academically corrected over the southeastern tropical Atlantic Ocean. This correction locally reduces the warm SST bias by more than 50 % with some remote impacts over equatorial regions. In contrast, the solar heat flux correction has locally little impact on the spring cooling. A second set of experiments quantifies the role of surface winds, using a nudging technique. When applied in a narrow equatorial region, the wind correction mainly improves the SST annual cycle amplitude along the Equator. It promotes not only the spring cooling along the Equator in preconditioning the mixed-layer depth but also in the southeastern Atlantic along the African coast. These local and remote effects are attributed to the more realistic representation of the oceanic equatorial circulation, driven by corrected winds. These results are consistent with those reported by Wahl et al. (Clim Dyn 36:891–906, 2011) in a very similar study with the Kiel Climate Model. The solar and wind biases have comparable effects in their study, although the importance of off-equatorial winds is less clear in our study. Diagnosing the wind energy flux provides a physical understanding of the equatorial region. When combining the corrections of both the equatorial wind and the southeastern solar heat flux, no obvious feedback between them is evidenced. The present study also emphasizes the need to consider two time-scales, the annual mean and the seasonal cycle, as well as two regions, the equatorial and the southeastern Atlantic regions, to comprehensively address the Atlantic SST bias. As pointed out in Richter (Clim Dyn, doi:10.1007/s00382-012-1624-5, 2013), the need to improve the atmospheric component of the CNRM-CM model is emphasized, even though strong positive coupling feedbacks are highlighted.  相似文献   

15.
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.  相似文献   

16.
海洋模式比较计划(OMIP)是第六次国际耦合模式比较计划(CMIP6)中的一个支撑子计划。OMIP致力于CMIP6中模式系统偏差来源及其影响这样一个重要科学问题。同时,OMIP也将在区域海平面变化和近期气候(未来10~30 a)或者年代际气候预测的相关科学问题上有重要贡献,这些问题被世界气候研究计划(WCRP)列为气候科学领域巨大挑战的科学问题。OMIP采用统一的大气外强迫数据集和通量计算方案,进行全球海洋-海冰耦合试验、示踪物试验以及生物地球化学循环试验。同时,OMIP提供了一套针对海洋变量的详细的诊断框架,这个框架既可以评估和改进模式模拟,也可以用于理解海洋-海冰过程在整个气候系统中的作用。  相似文献   

17.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   

18.
马嘉理  姚秀萍 《气象学报》2015,73(1):883-894
利用第5次耦合模式比较计划(CMIP5)提供的39个全球气候模式模拟的1961—2005年逐月500 hPa位势高度场资料,以及同期美国国家环境预测中心再分析资料,通过经验正交函数分解提取主要模态,基于泰勒图方法、概率密度函数的Brier评分和显著性评分指标,探讨CMIP5模式对东亚500 hPa高度场主要模态时空结构的模拟能力,寻求具有较好东亚环流型态模拟能力的气候模式以及模拟较好的主模态。结果表明:(1) CMIP5模式能够模拟出东亚500 hPa高度场主要模态,且各模式对冬季主要模态时空结构的模拟能力都高于夏季。(2) 各模式对冬季模态(西太平洋遥相关型)模拟能力最强,第3模态最差,对冬季主要模态空间结构模拟较好的模式为IPSL-CM5B-LR、MPI-ESM-P、CMCC-CMS、FGOALS-g2、HadGEM2-ES;夏季第1模态空间结构模拟能力最强,其次分别为第2模态和东亚-太平洋型(简记第3模态),西太平洋遥相关型较差,对夏季主要模态空间结构模拟较好的模式为ECEARTH、CanESM2、CMCC-CM、GFDL-ESM2G、IPSL-CM5A-MR。(3)对主要模态时间系数概率密度函数特征的模拟评估表明,模式对冬季第2模态概率密度函数的模拟较好,其次为西太平洋遥相关型,其主要模态时间系数的概率密度函数模拟较好的模式为CESM1-FASTCHEM、HadGEM2-ES、INM-CM4、GISS-E2-H、BCC-CSM1-1;模式对夏季第2模态时间系数的概率密度函数模拟较好,其次分别为第3模态、西太平洋遥相关型,其主要模态时间系数概率密度函数模拟较好的模式为CCSM4、HadGEM2-CC、GFDL-CM3、MRI-CGCM3、NorESM1-M。(4)综合时空结构模式模拟能力,对冬季主要模态模拟较好的前5个模式为HadGEM2-ES、IPSL-CM5B-LR、CESM1-FASTCHEM、INM-CM4、BCC-CSM1-1;夏季前5个模式为ECEARTH、CMCC-CM、CCSM4、CANESM2、MIROC5。  相似文献   

19.
Most of the uncertainty in the climate sensitivity of contemporary general circulation models (GCMs) is believed to be connected with differences in the simulated radiative feedback from clouds. Traditional methods of evaluating clouds in GCMs compare time–mean geographical cloud fields or aspects of present-day cloud variability, with observational data. In both cases a hypothetical assumption is made that the quantity evaluated is relevant for the mean climate change response. Nine GCMs (atmosphere models coupled to mixed-layer ocean models) from the CFMIP and CMIP model comparison projects are used in this study to demonstrate a common relationship between the mean cloud response to climate change and present-day variability. Although atmosphere–mixed-layer ocean models are used here, the results are found to be equally applicable to transient coupled model simulations. When changes in cloud radiative forcing (CRF) are composited by changes in vertical velocity and saturated lower tropospheric stability, a component of the local mean climate change response can be related to present-day variability in all of the GCMs. This suggests that the relationship is not model specific and might be relevant in the real world. In this case, evaluation within the proposed compositing framework is a direct evaluation of a component of the cloud response to climate change. None of the models studied are found to be clearly superior or deficient when evaluated, but a couple appear to perform well on several relevant metrics. Whilst some broad similarities can be identified between the 60°N–60°S mean change in CRF to increased CO2 and that predicted from present-day variability, the two cannot be quantitatively constrained based on changes in vertical velocity and stability alone. Hence other processes also contribute to the global mean cloud response to climate change.  相似文献   

20.
A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we demonstrate how a model simulation of multiple tracers and utilization of a variety of observational data help us to obtain additional information about the parameterization of ocean circulation and air–sea gas exchange, relative to approaches that use only a single tracer. The benefit of using multiple tracers is based on the fact that individual tracer holds unique information with regard to ocean mixing, circulation, and air–sea gas exchange. In a previous modeling study, we have shown that the simulation of radiocarbon enables us to identify the importance of parameterizing sub-grid scale ocean mixing processes in terms of diffusive mixing along constant density surface (isopycnal mixing) and the inclusion of the effect of mesoscale eddies. In this study we show that the simulation of phosphate, a major macronutrient in the ocean, helps us to detect a weak isopycnal mixing in the upper ocean that does not show up in the radiocarbon simulation. We also show that the simulation of chlorofluorocarbons (CFCs) reveals excessive upwelling in the Southern Ocean, which is also not apparent in radiocarbon simulations. Furthermore, the updated ocean inventory data of man-made radiocarbon produced by nuclear tests (bomb 14C) enable us to recalibrate the rate of air–sea gas exchange. The progressive modifications made in the model based on the simulation of additional tracers and utilization of updated observational data overall improve the model’s ability to simulate ocean circulation and air–sea gas exchange, particularly in the Southern Ocean, and has great consequence for projected CO2 uptake. Simulated global ocean uptake of anthropogenic CO2 from pre-industrial time to the present day by both previous and updated models are within the range of observational-based estimates, but with substantial regional difference, especially in the Southern Ocean. By year 2100, the updated model estimated CO2 uptake are 531 and 133 PgC (1PgC?=?1015 gram carbon) for the global and Southern Ocean respectively, whereas the previous version model estimated values are 540 and 190 PgC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号