首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—?The mapping of the seismic ground motion in Bucharest, due to the strong Vrancea earthquakes, is carried out using a complex hybrid waveform modeling method that allows easy parametric tests. Starting from the actually available strong motion database, we can make realistic predictions for the possible ground motion. The basic information necessary for the modeling consists of: (a) The representative mechanisms for the strong subcrustal events, (b) the average regional structural model, and (c) the local structure for Bucharest. Two scenario earthquakes are considered and the source influence on the local response is analyzed in order to define generally valid ground motion parameters, to be used in the seismic hazard estimations. The source has its own (detectable) contribution on the ground motion and its effects on the local response in Bucharest are quite stable on the transversal component (T), while the radial (R) and vertical (V) components are sensitive to the scenario earthquake. Although the strongest local effects affect the T component, both observed and synthetic, a complete determination of the seismic input for the built environment requires the knowledge of all three components of motion (R, V, T). The damage observed in Bucharest for the March 4, 1977 Vrancea event, the strongest earthquake to strike the city in modern times, is in agreement with the synthetic signals and local response.  相似文献   

2.
As a uniform approach to the assessment of ground motion variation within the Romanian capital Bucharest we analyze and compare strong motion records from analog recorders, weak motion data from a modern digital accelerometer network, and intensity observations of previous strong earthquakes. These different data sets allow to clearly characterize geographical trends in the distribution of ground shaking in the city for future earthquakes. Below 2 Hz the variability is small. Between 2 and 5 Hz, however, variations by a factor of 3–4 have to be expected. As the key source for the seismic hazard—the intermediate depth Vrancea earthquakes—remain at hypocentral distances in excess of 150 km from the city the ground motion variation must be predominantly attributed to site effects. This geometry of Vrancea sources to the site of Bucharest is ideal for the application of source-site separation techniques. However, despite this fact site effect amplification functions display a very large amount of aleatory uncertainty. In other words the standard source-site parameterization is too simple and we do not yet fully understand the cause and size of site effects.  相似文献   

3.
Vrancea major intermediate-depth earthquakes produced extreme damage in Bucharest city, located at about 165 km epicenter distance. Our purpose is to investigate the influence of local geological conditions upon the seismic motion in Bucharest in case of large (M>7) Vrancea earthquakes. Two input data sets are used: (a) geological, geotechnical and geophysical information, including in situ measurements, and (b) acceleration recordings of Vrancea earthquakes. Local response evaluation based on first dataset is confirmed by the spectral analysis of the earthquake records. Two main features are outlined: non-stationarity of ground motion dynamic amplification from one event to other and inadequacy of limiting the investigation depth to uppermost 30 m to evaluate ground dynamic characteristics. Consequently (1) we cannot extrapolate the ground motion response determined for moderate and small earthquakes to anticipate the effects of the large Vrancea shocks and (2) the local response is controlled by the entire package of Quaternary deposits which are significantly deeper than 30 m depth beneath Bucharest Area.  相似文献   

4.
According to the normative maps of the General Seismic Zoning in the Russian Federation, OSR-97, the Moscow metropolitan area is situated within the 5 point seismic zone. Of highest hazard priority for tall buildings in Moscow are the low-frequency vibrations proceeding from the deep sources of strong earthquakes that occur in the East Carpathians (the Vrancea zone, Romania) at a distance of approximately 1350 km from Moscow. Accelerations of the ground vibrations in Moscow are found from the analysis of seismic signals produced by Mw = 5.0 to Mw = 7.4 Vrancea earthquakes and recorded at the Moskva seismic station. Extrapolation of the parameters of the weak and moderate earthquakes towards stronger seismic events provides an estimate for the maximum expected horizontal accelerations of Ahor = 2.3 cm/s2 in case of the Mw = 8.0 Vrancea earthquake. The synthetic accelerogram of the maximum possible effect on the benchmark soils of Moscow is calculated. The displacements of the ground are multidimensional and not necessarily oriented strictly towards the seismic source. These inferences suggest that the MSK-64 macroseismic scale be corrected and the Construction Norms and Regulations, SNIP II-7-81*, be updated with regard to the hazard assessment of low-frequency seismic effects of 5 point and weaker seismic events including those caused by distant earthquakes.  相似文献   

5.
The Vrancea subcrustal earthquakes of August 30,1986 and May 30,1990 are the two most recent seismic events that have occurred in Romania with moment magnitudes M W ≥ 6.9.The spectral analysis of the strong ground motions recorded in Bucharest reveals that despite small differences in magnitude between the 1986 and 1990 earthquakes,their frequency contents are very different,sometimes even opposing.The main focus of this study is to conduct a comparative analysis of the response spectra in terms of the bi-normalized response spectra(BNRS) proposed by Xu and Xie(2004 and 2007) for strong ground motions recorded in Bucharest during these two seismic events.The mean absolute acceleration and relative velocity response spectra for the two earthquakes are discussed and compared.Furthermore,the mean bi-normalized absolute acceleration and normalized relative velocity response spectra with respect to the control period T C are computed for the ground motions recorded in Bucharest in 1986 and 1990.The predominant period T P is also used in this study for the normalization of the spectral period axis.Subsequently,the methodology proposed by Martinez-Perreira and Bommer(1998) is applied in order to estimate the seismic intensity of the two events.The results are discussed and several conclusions regarding the possibility of using the bi-normalized response spectra(BNRS) are given.  相似文献   

6.
We present the regional ground-motion prediction equations for peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and seismic intensity (MSK scale) for the Vrancea intermediate depth earthquakes (SE-Carpathians) and territory of Romania. The prediction equations were constructed using the stochastic technique on the basis of the regional Fourier amplitude spectrum (FAS) source scaling and attenuation models and the generalised site amplification functions. Values of considered ground motion parameters are given as the functions of earthquake magnitude, depth and epicentral distance. The developed ground-motion models were tested and calibrated using the available data from the large Vrancea earthquakes. We suggest to use the presented equations for the rapid estimation of seismic effect after strong earthquakes (Shakemap generation) and seismic hazard assessment, both deterministic and probabilistic approaches.  相似文献   

7.
Bucharest is one of the cities most affected by earthquakes in Europe. Situated at 150–170 km distance from Vrancea epicentral zone, Bucharest had suffered many damages due to high energy Vrancea intermediate-depth earthquakes. For example, the 4 March 1977 event produced the collapse of 32 buildings with 8–12 levels, while more than 150 old buildings with 6–9 levels were seriously damaged. The studies done after this earthquake had shown the importance of the surface geological structure upon ground motion parameters. New seismic measurements are performed in Bucharest area aiming at defining better elastic and dynamic properties of the shallow sedimentary rocks. Down-hole seismic measurements were performed in a number of 10 cased boreholes drilled in the Bucharest City area. Processing and interpretation of the data lead to the conclusion that shallow sedimentary rocks can be considered weak in the area, down to 150–200 m depth. Seismic wave velocity values and bulk density values presented in the paper associated with local geology are useful primary data in the seismic microzonation of Bucharest City. They are used as 1D models to derive transfer functions and response spectra for the stack of sedimentary rocks in several parts of Bucharest area, leading to a better knowledge of the local site amplification and associated frequency spectra. In a recent study the H/V spectral ratio using Nakamuras method was applied on the seismic noise measurements in 22 sites in Bucharest City in order to derive the fundamental period associated with these sites. The values confirm the previous results, showing a dominant resonance in the period range of 1.25–1.75 s. The fundamental periods obtained with Nakamuras method are in good agreement with those computed on the basis of geological and geotechnical data in boreholes, which show an increase of the fundamental period in the Bucharest area from south to north, in the same direction as the increase of the thickness of the Quaternary deposits above the Fratesti layer which is considered the bedrock in the area.  相似文献   

8.
This short article evaluates the stochastic method of ground motion simulation for Bucharest area using both the single-corner frequency model and recently introduced double-corner frequency models. A dedicated Q model is derived using ground motions obtained during the largest Vrancea earthquakes from the past 30 years. The simulated ground motions are tested against the observed data from the Vrancea earthquakes of August 1986 and May 1990. Moreover, the observed data are also compared against simulations obtained using the Q model derived by Oth et al. (2008). Finally, the results of the simulations show that the derived Q model is better suited for larger magnitude events, while the Q model of Oth et al. (2008) provides better results for smaller earthquakes.  相似文献   

9.
We present the frequency-dependent attenuation model for Fourier amplitude spectra of strong earthquake ground motion in Serbia from intermediate depth earthquakes in the Vrancea source zone in Romania. The development of this type of scaling is the essential first step toward developing the corresponding attenuation and scaling equations for pseudo relative velocity spectra (PSV), which are necessary for seismic macro- and microzoning in the territory of Serbia. Such scaling is necessary because the Vrancea source zone produces large earthquakes with shaking that attenuates differently from the local earthquakes in Serbia. Development of such a scaling model is associated with several difficulties, the principal one being the lack of recorded strong motion accelerograms at epicentral distances exceeding 300 km. To reduce uncertainties with such scaling, we require our preliminary scaling equations to be consistent with independent estimates of seismic moment, stress drop, and radiated wave energy. In the future, when the recorded strong motion data from Vrancea earthquakes increases several-fold of what it is today, it will become possible to perform this analysis again, thus leading to more reliable and permanent scaling estimates.  相似文献   

10.
The study of the site effects and the microzonation of a part of the metropolitan Sofia, based on the modelling of seismic ground motion along three cross-sections are performed. Realistic synthetic strong motion waveforms are computed for scenario earthquakes (M=7) applying a hybrid modelling method, based on the modal summation technique and finite differences scheme. The synthesized ground motion time histories are source and site specific. The site amplification is determined in terms of response spectra ratio (RSR). A suite of time histories and quantities of earthquake engineering interest are provided. The results of this study constitute a “database” that describes the ground shaking of the urban area. A case study of experiment-based assessment of vulnerability of a cast-in-situ single storey, industrial, reinforced concrete frame, designed according to Eurocodes 2 and 8 is presented. The main characteristics of damage index and storey drift are discussed for the purposes of microzonation.  相似文献   

11.
Historically, the Moscow region regularly experienced rather weak but quite perceptible seismic vibrations produced by intermediate-depth earthquakes of the Vrancea zone (Romania), located at a distance of 1400 km from Moscow. The coincidence of a number of unique factors such as a slowly varying focal depth, predominant source mechanisms, weak attenuation of seismic radiation in the north-northeast direction provide favorable conditions for application of the empirical Green’s function method. Using the digital seismogram of the Vrancea Mw-5.8 earthquake recorded at the Moscow seismic station, we simulated synthetic seismograms of a scenario (expected maximum) earthquake with Mw = 8.0, by application of the empirical Green’s function method adjusted for the given conditions. The calculation procedure was verified using analog records of strong earthquakes available at the Moscow seismic station. Digital records of the Obninsk seismic station included in the Incorporated Research Institutions for Seismology (IRIS) system were used for additional control. Here, the scenario earthquake was modeled using the data on a much stronger earthquake of 1990 (MW = 6.9). It is shown that, despite a certain scatter (quite adequately assessed in the scope of the method), the ultimate estimates of expected seismic impacts are quite reliable and can be recommended for practical use.  相似文献   

12.
Microzonation of Bucharest: State-of-the-Art   总被引:3,自引:0,他引:3  
— The 1940 (Mw=7.7) and 1977 (Mw=7.4) Vrancea earthquakes (Romania) inflicted heavy damage and casualties in Bucharest and the statistics indicate a recurrence interval of 25 years for Mw 7.0 events. Under these circumstances, the seismic microzonation represents important information for detailed urban planning that establishes an appropriate level of preparedness to the earthquake threat. This paper reviews the main studies concerning the seismicity of the Vrancea region, the site conditions of the city, the characterization of the building stock, and the codes of practice that regulate the antiseismic design. The first-order microzonation of Bucharest was performed starting from the existing database of structural and geotechnical parameters. New insights originating from direct instrumental observation and interpretation of the local effects as well as realistic numerical modeling that update and improve the input data necessary for a detailed microzoning map of the city are also discussed.  相似文献   

13.
On the selection of GMPEs for Vrancea subcrustal seismic source   总被引:2,自引:0,他引:2  
The Vrancea subcrustal seismic source is characterized by large magnitude ( $M_{W} \ge 7$ ) intermediate-depth earthquakes that occur two or three times during a century on average. In this study several procedures are used to grade four candidate ground motion prediction equations proposed for Vrancea source in the SHARE project. In the work of Delavaud et al. (J Seismol 16(3):451–473, 2012) four ground motion prediction models developed for subduction zones (Zhao et al. in Bull Seism Soc Am 96(3):898–913, 2006; Atkinson and Boore in Bull Seism Soc Am 93(4):1703–1729, 2003; Youngs et al. in Seism Res Lett 68(1):58–73, 1997; Lin and Lee in Bull Seism Soc Am 98(1):220–240, 2008) are suggested as suitable for Vrancea subcrustal seismic source. The paper presents the appropriateness analysis of the four suggested ground motion prediction equations done using a dataset of 109 triaxial accelerograms recorded during seven Vrancea seismic events with moment magnitude $M_{W}$ between 5.4 and 7.4, occurred in the past 35 years. The strong ground motions were recorded in Romania, as well as in Bulgaria, Republic of Moldova and Serbia. Based on the ground motion dataset several goodness-of-fit measures are used in order to quantify how well the selected models match with the recorded data. The compatibility of the four ground motion prediction models with respect to magnitude scaling and distance scaling implied by strong ground motion dataset is investigated as well. The analyses show that the Youngs et al. (Seism Res Lett 68(1):58–73, 1997) and Zhao et al. (Bull Seism Soc Am 96(3):898–913, 2006) ground motion prediction models have a better fit with the data and can be candidate models for Probabilistic Seismic Hazard Assessment.  相似文献   

14.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

15.
— Delhi – the capital of India lies on a severe earthquake hazard threat not only from local earthquakes but also from Himalayan events just 200–250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based on the modal summation and the finite-difference scheme for site-specific strong ground motion modelling. Complete realistic SH and #E5/E5#-SV wave seismograms are computed along two geological cross sections, (1) north-south, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) east-west, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section and normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude, particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross section and recomputed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz for the radial and transverse components of motion along the NS cross section. Along the EW cross section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is considerable at high frequency (>4 Hz.) whereas it is negligible in lower frequency range.  相似文献   

16.
Vrancea is one of the few singular seismic regions of the world where intermediate-depth earthquakes are permanently generated (around 10 events/month with M L > 3) within an extremely confined focal volume. This particularity and the relatively large number of short-period waveforms recorded by the Romanian local network provides us the opportunity to test the performance of the empirical Green's function technique in retrieving the source time function and source directivity of the Vrancea earthquakes. Three earthquakes that occurred on March 11, 1983 (M L = 5.4), April 12, 1983 (M L = 5.1) and August 7, 1984 (M L = 5.1) in the lower part of the subducting lithosphere (h 150 km) were analyzed. A set of 28 adjacent events (3.0 < M L < 4.4) which occurred between 1981 and 1997 were selected as corresponding empirical Green's functions. To test the confidence of the retrieved source time function, we compare the deconvolved pulses using Green's functions of different sizes and recorded simultaneously by short-period and broad-band instruments. Our tests show that the durations of the source time function is well-constrained and is not affected by the limited frequency range of the short-period instruments, or by the relative difference in the focal mechanism between the main event and Green's event. The apparent duration of the source time function outlines source directivity effects, and when these effects are sufficiently strong, they can identify the real fault plane. Relatively short source duration and correspondingly high stress drop values are in agreement with other previous results emphasizing a specific seismic regime in the lower part of the Vrancea subducting lithosphere.  相似文献   

17.
In this study, the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions. The simulation was conducted with a hybrid methodology, combining a stochastic high-frequency simulation with a low-frequency ground motion simulation, from the regional 1-D velocity structure model and the Wang WM et al.(2022) source rupture model,respect...  相似文献   

18.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

19.
The Vrancea seismogenic zone in Romania represents a peculiar source of seismic hazard, which is a major concern in Europe, especially to neighboring regions of Bulgaria, Serbia and Republic of Moldavia. Earthquakes in the Carpathian–Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 km occur. One of the cities most affected by earthquakes in Europe is Bucharest. Situated at 140–170 km distance from Vrancea epicenter zone, Bucharest encountered many damages due to high energy Vrancea intermediate-depth earthquakes; the March 4, 1977 event (Mw=7.2) produced the collapse of 36 buildings with 8–12 levels, while more than 150 old buildings were seriously damaged. A dedicated set of applications and a method to rapidly estimate magnitude in 4–5 s from detection of P wave in the epicenter were developed. They were tested on all recorded data. The magnitude error for 77.9% of total considered events is in the interval [−0.3, +0.3] magnitude units. This is acceptable taking into account that the magnitude is computed from only 3 stations in a 5 s time interval (1 s delay is caused by data packing). The ability to rapidly estimate the earthquake magnitude combined with powerful real-time software, as parts of an early warning system, allows us to send earthquake warning to Bucharest in real time, in about 5 s after detection in the epicenter. This allows 20–27 s warning time to automatically issue preventive actions at the warned facility.  相似文献   

20.
Ground Motion Zoning of Santiago de Cuba: An Approach by SH Waves Modelling   总被引:3,自引:0,他引:3  
— The expected ground motion in Santiago de Cuba basin from earthquakes which occurred in the Oriente fault zone is studied. Synthetic SH-waves seismograms have been calculated along four profiles in the basin by the hybrid approach (modal summation for the path source-profile and finite differences for the profile) for a maximum frequency of 1 Hz. The response spectra ratio (RSR) has been determined in 49 sites, distributed along all considered profiles with a spacing of 900 m. The corresponding RSR versus frequency curves have been classified using a logical-combinatorial algorithm. The results of the classification, in combination with the uppermost geological setting (geotechnical information and geological geometry of the subsoil) are used for the seismic zoning of the city. Three different main zones are identified, and a small sector characterized by major resonance effects, due to the particular structural conditions. Each zone is characterized in terms of its expected ground motion parameters for the most probable strong earthquake (MS=7), and for the maximum possible (MS=8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号