首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 832 毫秒
1.
利用磷灰石裂变径迹法研究金顶铅锌矿成矿时代   总被引:9,自引:0,他引:9  
矿物的裂变径迹年龄分析可有效地用于热液矿床成矿时代的研究。对金顶超大型铅锌矿床的成矿年龄存在不同的看法,本文以架崖山矿段为代表,采用磷灰石裂变径迹分析方法测定了金顶铅锌矿床的成矿年龄。结果表明:金顶铅锌矿床的成矿期在渐新世,其后遭受了喜马拉雅造山运动的热扰动。  相似文献   

2.
Linear belts of Gondwana basins developed in the Indian continent since Late Palaeozoic along favoured sites of Precambrian weak zones like cratonic sutures and reactivated mobile belts. The Tibetan and Sibumasu - West Yunnan continental blocks, that were located adjacent to proto-Himalayan part of the Indian continent, rifted and drifted from the northern margin of the East Gondwanic Indo-Australian continent, during Late Palaeozoic, when the said northern margin was under glacial or cool climatic condition and rift-drift tectonic setting. The Indo-Burma-Andaman (IBA), Sikule, Lolotoi blocks were also rifted and drifted from the same northern margin during Late Jurassic. This was followed by the break-up of the Australia-India-Madagascar continental block during the Cretaceous. The activity was associated with hot spot related volcanism and opening up of the Indian Ocean. The Late Cretaceous and Tertiary phases of opening of the Arabian Sea succeeded the Early Cretaceous phase of opening of the Bay of Bengal, part of the Indian Ocean. The Palaeo- and Neo-Tethyan sutures in Tibet, Yunnan, Laos, Thailand and Vietnam reveal the complex opening and closing history of the Tethys. The IBA block rotated clockwise from its initial E-W orientation because of 90°E and adjacent dextral transcurrent fault movements caused due to faster northward movement of the Indian plate relative to that of Australia. The India-Tibet terminal collision during Early-Middle Eocene initiated Himalayan orogenesis and contemporaneously there was foreland basin development that was accompanied with sporadic but laterally extensive continental-flood-basalt (CFB) type and related volcanism. The Paleogene rocks of the Himalayan foreland basin are involved in tectonism and are mostly concealed under older rocks.

The Mesozoic-Early Eocene ophiolite terrane on IBA does not represent the eastern suture of the Indian plate but occurs as klippe on IBA, caused due to oblique collision between Sibumasu and IBA during Late Oligocene. Post-collisional indentation of Y-shaped Indian continent into the Asian collage produced Himalayan syntaxes, clockwise rotation of the Sibumasu block which was then sutured to the Tibetan and SE Asian blocks, and tectonic extrusion of the Indochina block along the Ailao Shan Red River (ASRR) shear zone. Highly potassic magmatic rocks were emplaced during Late Palaeogene at the oroclinally flexed marginal parts of the South China continental lithosphere. These magmatic bodies were dislocated by the ASRR left lateral shear zone soon afterwards. Petrogenetic and tectonic processes that generated the Eocene CFB volcanics at the Himalayan foreland basin may have also produced Late Palaeogene magmatism from outer parts of the Namche-Barwa Syntaxis. Their site-specific location and time sequence suggest them to be genetically related to the India-Asia collision process and Indian continent's indentation-induced syntaxial buckling. Deep mantle-reaching fractures were apparently produced during India-Asia terminal collision at the strongly flexed leading brittle edge of the Indian continental lithosphere, and possibly later in time at the outer oroclinally bent marginal parts of the rigid South China continental lithosphere, generating typical magma.

The subduction zone that developed along the western margin of IBA due to oblique convergence between the IBA and the Indian plate is still active. The northern end of IBA ultimately collided with the NE prolongation of the Indian continent and was accreted to it during Mio-Pliocene. The Shillong massif was uplifted and overthrust over the Bengal Basin located over its passive margin to the south, whereas, the Eocene distal shelf sediments of IBA were overthrust over the Tertiary shelf of the Indian continent.  相似文献   


3.
位于印度板块北缘和雅鲁藏布江结合带之间的珠穆朗玛峰北坡地区,属于喜马拉雅造山带,是特提斯洋的重要组成部分。自奥陶纪至古近纪约5亿年期间发育一套基本连续的海相沉积,厚度达14 km,是研究特提斯洋形成演化的最佳地区。作者在对该区显生宙地层主干剖面和辅助剖面详细观察研究以及区域地质调查填图的基础上,将珠穆朗玛峰北坡地区显生宙沉积地层划分为海相、海陆过渡相和陆相3个沉积相组、15个沉积相和若干个沉积亚相。作者通过对该区沉积盆地的地层系统、沉积相、沉积特征的系统研究,将珠穆朗玛峰北坡地区显生宙沉积演化划分为6个阶段:1)奥陶纪-泥盆纪为稳定陆表海演化阶段;2)石炭纪-二叠纪为大陆裂谷盆地演化阶段;3)三叠纪-侏罗纪为被动大陆边缘盆地演化阶段;4)早中白垩世为前陆早期复理石盆地演化阶段;5)晚白垩世-古新世为前陆晚期磨拉石盆地演化阶段;6)古近纪-第四纪为造山隆升断陷盆地形成演化阶段。研究结果表明,珠穆朗玛峰北坡地区显生宙沉积盆地经历了由陆表海盆地-大陆裂谷盆地-被动大陆边缘盆地-前陆盆地-断陷盆地的演化过程。  相似文献   

4.
青藏高原现今构造变形特征与GPS速度场   总被引:105,自引:12,他引:105  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):442-450
文章以青藏高原的GPS观测数据为基础 ,结合活动地质构造资料 ,研究了青藏高原的现今构造变形状态和机制 ,并探讨青藏高原现今构造变形所反映的大陆内部动力学过程。GPS观测的速度矢量揭示了青藏高原整体向北和向东运动的趋势 ,平行于印度和欧亚板块碰撞方向上的地壳缩短量约是 38mm/a ,而青藏高原周边主要断裂带的滑动速率均在 10mm/a以下。大约 90 %的印度与欧亚板块相对运动量被青藏高原的地壳缩短所吸收和调节。GPS速度矢量由南向北逐渐向东偏转 ,向东的分量也增加 ,形成了以羌塘地块北部 (或玛尼—玉树—鲜水河断裂 )和祁连山中部为中心的两个地壳物质向东流动带。青藏高原的向东挤出实际上是地壳物质在印度板块推挤下和周边刚性地块阻挡下围绕东构造结发生的顺时针旋转。  相似文献   

5.
作者对新疆伊宁地区早二叠世地层的古地磁进行了研究。结果表明:1)早二叠世时,伊犁地块已增生到欧亚大陆之上并同塔里木地块连在一起;2)早二叠世后伊犁地块相对欧亚大陆北部稳定区发生过大规模顺时针旋转运动。  相似文献   

6.
The Taurides, the southernmost of the three major tectonic domains that constitute present‐day Turkey, were emplaced following consumption of the Tethyan Ocean in Late Mesozoic to mid‐Tertiary times. They are generally assigned an origin at the northern perimeter of Gondwana. To refine palaeogeographic control we have investigated the palaeomagnetism of a range of Jurassic rocks. Forty‐nine samples of Upper Jurassic limestones preserve a dual polarity remanence (D/I=303/−9°, α95=6°) interpreted as a primary magnetization acquired close to the equator and rotated during emplacement of the Taurides. Result from mid‐Jurassic dolerites confirm a low palaeolatitude for the Tauride Platform during Jurassic times at the Afro–Arabian sector of Gondwana. Approximately 4000 km of Tethyan closure subsequently occurred between Late Jurassic and Eocene times. Although related Upper Jurassic limestones and Liassic redbeds preserve a sporadic record of similar remanence, the dominant signature in these latter rocks is an overprint of probable mid‐Miocene age, probably acquired during a single polarity chron and imparted by migration of a fluid front during nappe loading. This is now rotated consistently anticlockwise by c. 30° and conforms to results of previous studies recording bulk Neogene rotation of the Isparta region following Lycian nappe emplacement. The regional distribution of this overprint implies that the Isparta Angle (IA) has been subject to only small additional closure (<10°) since Late Miocene time. A smaller amount (c. 6°) of clockwise rotation within the IA since Early Pliocene times is associated with an ongoing extensional regime and reflects an expanding curvature of the Tauride arc produced by southwestward extrusion of the Anatolian collage as a result of continuing northward motion of Afro–Arabia. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A deflection of the fault controlled southwestern coastline of Vancouver Island suggests the presence of a minor orocline, with a Southern Crustal Block (south of Barkley Sound–Alberni Inlet) rotated 20° counterclockwise relative to a Northern Fixed Crustal Block about a pole of rotation located northeast of Port Alberni. In this paper two models of orocline development, one of pure block rotation and one of pure bending, are proposed. The predictions of these models are tested against available geological maps, structural orientation data, identified regions of extension and contraction, and paleomagnetic data. Structural orientation and paleomagnetic data are consistent with 18° of post-Late Cretaceous counter clockwise rotation of the Southern Crustal Block relative to the Northern Fixed Crustal Block. A southward increase in the magnitude of rotation evident in the structural orientation data argues for a model of bending. Both bending and block rotation models predict the development of a zone of contraction along the northeast margin of the Southern Crustal Block, coincident with the location of the Eocene Cowichan fold-and-thrust belt, that diminishes northward toward the pole of rotation. As predicted, the fold-and-thrust belt is characterized by a northerly decrease in the amount of shortening, from >30% at the south end of the thrust belt, to 0% shortening north of Port Alberni. The northerly decrease in shortening is complemented by a north to south change in structural style from cylindrical to conical folds, and finally to planar, undeformed strata. The model of block rotation predicts the presence of a zone of extension extending southwest from the zone of rotation, coincident with the location of Eocene extensional structures within Barkley Sound and with horst and graben structures in the offshore Eocene to Miocene Tofino basin. Extension is less than predicted by a model of pure block rotation and suggests that much of the oroclinal rotation was accommodated by bending. Timing constraints indicate that orocline development was coeval with, and resulted from, the Eocene accretion of seamounts of the Crescent terrane. These findings demonstrate that oroclinal orogeny, the buckling of a linear crustal beam about vertical axes of rotation, can significantly impact the geometry, structure and character of an orogenic belt, even where the buckles are minor (<20° of rotation).  相似文献   

8.
青藏高原的现今地壳活动性   总被引:2,自引:0,他引:2  
蔡厚维 《西北地质》2009,42(1):34-42
古近纪以来,印度板块与欧亚大陆的碰撞和持续的俯冲作用,造成了青藏高原强烈的陆内变形,引起了古造山带的复活;同时也使高原前陆盆地和内部的一些中小型盆地内数百米至数千米厚的新生代地层发生褶皱和冲断,遍布全区的逆冲推覆构造、走滑断裂和活动褶皱,在区域性的北东-南西向的构造应力作用下,导致高原地壳缩短加厚和整体向东滑移。高原的抬升是整体地、间歇性地、不均速地隆升。它经历了古近纪缓慢抬升一新近纪末至更新世快速抬升一全新世地壳振荡运动频繁的三个阶段。自7Ma至今,青藏高原累计抬高了3000~3500m,喜马拉雅山从古地中海崛起以来,至少上升了5000m。现代地热、地震发生,至今没有停止活动。  相似文献   

9.
Due to northward subduction of Neotethys, the ?stanbul zone collided with the Sakarya zone in northwest Turkey during the early Eocene. Subsequently, this region was subjected to compressional forces during the late Eocene–early Miocene period. Folds, thrusts and reverse faults developed approximately parallel to long axes of the ?stanbul zone. NNW–SSE oriented conjugate strike‐slip faults developed with continued contraction. In addition to the orientations of palaeotectonic features, the morphotectonic, stratigraphic and seismic characteristics expose differences between the northeastern Marmara peneplain and the southern Black Sea highland. This study reports causes of this diversity reflecting the neotectonic evolution of the ?stanbul zone. The diversity is related to the clockwise rotation of the Kocaeli peninsula between two dextral zone‐bounding faults and two sinistral block‐bounding faults. The principle factors of this process were the development of the North Anatolian fault zone (NAFZ) and the related evolution of the Adapazar?–Karasu fault zone (AKFZ), the Bosphorus fault zone (BFZ) and the Northern Boundary fault (NBF).  相似文献   

10.
The Himalaya and Lhasa blocks act as the main belt of convergence and collision between the Indian and Eurasian plates. Their crustal structures can be used to understand the dynamic process of continent–continent collision. Herein, we present a 3D crustal density model beneath these two tectonic blocks constrained by a review of all available active seismic and passive seismological results on the velocity structure of crust and lower lithosphere. From our final crustal density model, we infer that the present subduction-angle of the Indian plate is small, but presents some variations along the west–east extension of the orogenic belt: The dip angle of the Moho interface is about 8–9° in the eastern and western part of the orogenic belt, and about 16° in the central part. Integrating crustal P-wave velocity distribution from wide-angle seismic profiling, geothermal data and our crustal density model, we infer a crustal composition model, which is composed of an upper crust with granite–granodiorite and granite gneiss beneath the Lhasa block; biotite gneiss and phyllite beneath the Himalaya, a middle crust with granulite facies and possible pelitic gneisses, and a lower crust with gabbro–norite–troctolite and mafic granulite beneath the Lhasa block. Our density structure (<3.2 g/cm3) and composition (no fitting to eclogite) in the lower crust do not be favor to the speculation of ecologitized lower crust beneath Himalaya and the southern of Lhasa block.  相似文献   

11.
古地磁初步研究结果表明,早古生代阶段,河西走廊过渡带与阿拉善地块古纬度接近,且漂移过程中形影相随,说明其间并无洋盆相隔。志留纪末,河西走廊过渡带与阿拉善地块拼接,但二者磁极位置与古方位均有差异,可能表明走廊过渡带相对于阿拉善地块同时作了顺时针旋转。泥盆纪时,两地块古纬度一致,但古方位不同,可能反映在碰撞拼合后二者间仍有相对的旋转运动。二叠纪时,二块体的空间位置及其配置关系已与现状接近。  相似文献   

12.
The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma) succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent measurements those suggest main flows directed towards southeast, south and east with minor variations. This implies that the river system stabilized later than 41 Ma and the Higher Himalaya attained sufficient height around this time. The chemical composition of the sandstones and mudstones occurring in the early foreland basin sequences are intermediate between the active and passive continental margins and/or same as the passive continental margins. The sedimentary succession of this basin has sustained a temperature of about 200 °C and undergone a burial depth of about 6 km.  相似文献   

13.
作者获得资料说明,辽河裂谷是以今辽河裂谷中的主断裂为界,辽宁东部和辽宁西部是相互远离的两个地块—辽东地体和辽西地体。在古生代后期或中生代初期它们发生增置作用(或拼合作用)。中生代晚期在拼合的辽东地体和辽西地体接触部位的构造薄弱带上产生了地壳变薄、膨胀上隆,并形成了辽河裂谷。这说明除地幔内部物质所特有的异常活动外,裂谷作用显然与地球历史早期潜伏下来的基底构造格局有关。  相似文献   

14.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

15.
PALEOMAGNETIC ESTIMATE OF THE MESOZOIC—CENOZOIC LATITUDINAL DISPLACEMENT OF TERRENES IN THE QINGHAI—TIBET PLATEAU AND ITS SIGNIFICANCE1 QianFang ,PreliminarystudyonthehorizontalmovementofNgariarea ,Tibet,sincePliocene[A].AbstractfromInterna tionalSymposiumonHimalayaGeologySciences[C].1984,2 49~ 2 5 0 . 2 JiangChunfa .OpeningandclosingstructuresofKunlun[M ].Beijing :GeologicalPublishingHouse ,1992 ,15 4~ 2 17. 3 XuZhiqin ,…  相似文献   

16.
INTRODUCTIONANDBRIEFGEOLOGICALDESCRIP┐TIONSTheUpperOrdovicianmarinevolcanicrocksonthenorthmarginofQaidamhavebeenrepeatedlydis...  相似文献   

17.
王二七  孟恺  许光  樊春  苏哲 《岩石学报》2018,34(7):1867-1875
印度陆块与欧亚大陆的碰撞是印度洋扩张和特提斯洋闭合综合作用的结果。本文通过综合分析和研究提出这3个板块的相互作用致使印度陆块发生过2次向北的仰冲:早期(古新世末-始新世初,~57Ma)仰冲受其超高速运动(140mm/yr)的驱动,与特提斯之间产生的速度差致使两者间的边界发生破裂,密度小的印度陆块沿印度洋东经90°海岭和马尔代夫岛链向北仰冲到特提斯洋壳之上,两者的叠加导致印度陆块北缘——特提斯喜马拉雅地壳增厚(~70km)并且沉积了一套造山磨拉石——柳曲砾岩;晚期(渐新世-中新世之交,~25Ma)仰冲发生在碰撞后,由于高喜马拉雅结晶岩系沿主中央冲断带和藏南拆离断裂发生的垂向挤出,位于上盘的特提斯喜马拉雅沉积盖层同时发生重力垮塌,沿大喜马拉雅反冲断裂仰冲到冈底斯岩浆岩带之上并且造成后者的隆升和前陆下陷,其北缘充填了一套造山磨拉石沉积——大竹卡砾岩。这两次构造事件均受印度陆块的快速运动驱动。此外,在印度陆块超高速运动的挤压下,特提斯洋可能在早白垩世之后就停止了扩张,而老的洋壳不是俯冲消减了就是被仰冲的印度陆块掩盖了,这解释了为什么雅鲁藏布江缝合带只存早白垩世蛇绿岩。印度洋内东经90°海岭和马尔代夫岛链构成印度陆块的南东和南西边界,前者呈右行走滑,后者呈左行走滑,两者勾画出印度陆块向北漂移的轨迹。  相似文献   

18.
Counterclockwise rotation is a characteristic feature of the results of most paleomagnetic studies of the Pontides and Anatolides of central Turkey, applicable to regions both north and south of the North Anatolian fault zone. In this paper, we report new data from Eocene volcanics and assess existing data from the calc-alkaline volcanic suites of this age. Although there are regional variations, probably resulting from rotations of individual fault blocks, an average counterclockwise rotation of ~33° is identified across a region extending from 34° to 38° E Long. A mean Eocene paleolatitude of 27° N is compatible with ongoing northward movement and residual closure of a few degrees across the Pontide orogen during the latter part of its paleotectonic history. It seems probable that this rotated domain extends as far west as the Aegean graben system of western Turkey and as far south as the Taurides. Paleomagnetic evidence from younger volcanics suggests that the bulk of the rotation occurred during Quaternary time. The counterclockwise rotation of central Turkey is complemented by contemporaneous clockwise rotation of Greece, and the combined differential motion has produced the Aegean Sea in between them.  相似文献   

19.
探究青藏高原东南缘构造旋转变形有助于理解青藏高原内部物质向东南方向的挤出过程。目前,有关青藏高原东南缘的构造旋转研究主要针对于两套地层:侏罗系—始新统和中新统—第四系。对侏罗系—始新统研究表明了大范围的顺时针旋转变形的存在,而对中新统—第四系的研究则表明该区域可能同时存在逆时针旋转变形。然而,对这两种构造旋转变形的时间和幅度仍缺乏充分的制约。位于川滇地块的四川盐源盆地同时出露这两套地层。磁性地层研究表明,上新统—中更新统的时代为3.6~0.6 Ma。磁偏角数据揭示上新统—中更新统经历了逆时针旋转变形(-14.4°±2.7°),而古新统—始新统经历了明显的顺时针旋转(10°~21.5°),两套地层间的旋转幅度高达36.6°。鉴于青藏高原东南缘发生大规模顺时针旋转变形的最年轻地层为始新统地层,因此顺时针旋转变形可能发生在始新世—中新世某个时间段。这个时间与红河—哀牢山走滑断裂带的活动时间基本一致,因此顺时针旋转变形可能与该大型断裂带的活动直接相关。盐源盆地记录到的逆时针旋转变形发生于至少3.6 Ma以来,平均旋转速率为4°/Ma。由于磁组构数据表明上新世—中更新世地层并未受到挤压变形作用,因此其逆时针旋转变形可能受周围走滑断裂带的控制。  相似文献   

20.
刘晨  王汝成  吴福元  谢磊  刘小驰 《岩石学报》2021,37(11):3287-3294
喜马拉雅淡色花岗岩具有较好的稀有金属成矿前景。珠穆朗玛峰位于该淡色花岗岩带的中部,其中大量的淡色花岗岩和伟晶岩出露,并成为珠穆朗玛重要的岩石组成部分。近期,我们在珠峰前进沟地区发现并采集了锂成矿伟晶岩,在手标本上可以清晰看到浅褐红色的铁锂云母。进一步的全岩地球化学以及矿物学研究表明,前进沟锂成矿伟晶岩为锂电气石-锂云母型伟晶岩,具有稀有金属元素(Be-Nb-Li)含量高、Rb/Sr比值高、Zr/Hf和Nb/Ta比值低等特征。所有的矿物学和地球化学特征都表明该伟晶岩经历了高度的岩浆分异作用。矿物成分上看,云母由铁锂云母演变为锂云母,电气石由黑电气石演变为锂电气石,Fe、Mg含量降低,Li含量升高,这一特征直接指示着演化过程中岩浆成分的变化。这次发现,是首次在该地区发现锂成矿作用,也是我国喜马拉雅首次报道锂电气石-锂云母型伟晶岩的存在。结合珠穆朗玛峰周围(普士拉、热曲)近期发现的锂辉石-透锂长石型伟晶岩,珠穆朗玛地区很可能成为我国重要的一个锂(Li)成矿远景区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号