首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Recent seismic events have raised concerns over the safety and vulnerability of reinforced concrete moment resisting frame “RC-MRF” buildings. The seismic response of such buildings is greatly dependent on the computational tools used and the inherent assumptions in the modelling process. Thus, it is essential to investigate the sensitivity of the response demands to the corresponding modelling assumption. Many parameters and assumptions are justified to generate effective structural finite element (FE) models of buildings to simulate lateral behaviour and evaluate seismic design demands. As such, the present study focuses on the development of reliable FE models with various levels of refinement. The effects of the FE modelling assumptions on the seismic response demands on the design of buildings are investigated. the predictive ability of a FE model is tied to the accuracy of numerical analysis; a numerical analysis is performed for a series of symmetric buildings in active seismic zones. The results of the seismic response demands are presented in a comparative format to confirm drift and strength limits requirements. A proposed model is formulated based on a simplified modeling approach, where the most refined model is used to calibrate the simplified model.  相似文献   

3.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, the multi‐intensity seismic response of code‐designed conventional and base‐isolated steel frame buildings is evaluated using nonlinear response history analysis. The results of hazard and structural response analysis for three‐story braced‐frame buildings are presented in this paper. Three‐dimensional models for both buildings are created and seismic response is assessed for three scenario earthquakes. The response history analysis results indicate that the design objectives are met and the performance of the isolated building is superior to the conventional building in the design event. For the Maximum Considered Earthquake, isolation leads to reductions in story drifts and floor accelerations relative to the conventional building. However, the extremely high displacement demands of the isolation system could not be accommodated under normal circumstances, and creative approaches should be developed to control displacements in the MCE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Damage assessments after past earthquakes have frequently revealed that plan configuration irregular buildings have more severe damage due to excessive torsional responses and stress concentration than regular buildings. The plan configuration irregularities introduce major challenges in the seismic design of buildings. One such form of irregularity is the presence of re-entrant corners in the L-shaped buildings that causes stress concentration due to sudden changes in stiffness and torsional response amplification; hence causes early collapse. A constructive research into re-entrant corner and torsional irregularity problems is essentially needed greater than ever. Therefore, the focus of this study is to investigate structural seismic response demands for the class of L-shaped buildings through evaluating the plan configuration irregularity of re-entrant corners and lateral–torsion coupling effects on measured seismic response demands. The measured responses include story drift, inter-story drift, story shear force, overturning moment, torsion moment at the base and over building height, and torsional irregularity ratio. Three dimensional finite element model for nine stories symmetric buildings as reference model is developed. In addition, six L-shaped building models are formulated with gradual reduction in the plan of the reference building model. The results prove that building models with high irregularity are more vulnerable due to the stress concentration and lateral torsional coupling behavior than that with regular buildings. In addition, the related lateral shear forces in vertical resisting elements located on the periphery of the L-shaped buildings could be significantly increased in comparison with the corresponding values for a symmetric building.  相似文献   

7.
This paper presents applications of the modified 3D‐SAM approach, a three‐dimensional seismic assessment methodology for buildings directly based on in situ experimental modal tests to calculate global seismic demands and the dynamic amplification portion of natural torsion. Considering that the building modal properties change from weak to strong motion levels, appropriate modification factors are proposed to extend the application of the method to stronger earthquakes. The proposed approach is consistent with the performance‐based seismic assessment approach, which entails the prediction of seismic displacements and drift ratios that are related to the damage condition and therefore the functionality of the building. The modified 3D‐SAM is especially practical for structures that are expected to experience slight to moderate damage levels and in particular for post‐disaster buildings that are expected to remain functional after an earthquake. In the last section of this paper, 16 low to mid‐rise irregular buildings located in Montreal, Canada, and that have been tested under ambient vibrations are analyzed with the method, and the dynamic amplification portion of natural torsion of the dataset is reported and discussed. The proposed methodology is appropriate for large‐scale assessments of existing buildings and is applicable to any seismic region of the world. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Structural impact between adjacent buildings may induce local and, in some extreme cases, severe damage, especially in the case of seismically isolated buildings. This study parametrically investigates in the three‐dimensional domain the effect of pounding on the peak response of base‐isolated buildings, which are simulated as nonlinear three‐dimensional multi‐degree‐of‐freedom systems. Firstly, it is shown that considering unidirectional, instead of bidirectional, excitations may lead to underestimation of the base drift demands. Subsequently, the peak responses of seismically isolated buildings utilizing lead rubber bearings are studied while varying important parameters, such as the incidence angle of seismic excitations, the available seismic clearance, and mass eccentricities, under the action of bidirectional horizontal excitations. A large number of numerical simulations are performed using a specially developed software that implements an efficient approach to model impacts, taking into account arbitrary locations of contact points. It is found that the peak interstory drift ratio is significantly influenced by the directionality of the ground motion. Therefore, the seismic performance of structures should ideally be assessed examining the peak structural response while bidirectional ground motions are imposed at various incident angles. Furthermore, it is also observed that the interstory drift ratios increase while decreasing the available gap size, up to a certain value. Finally, the parametric analyses indicate that the effects of impact are more severe for structures with mass eccentricities, and in which case, the estimation of the critical incidence angle becomes more laborious. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Multi‐storey main buildings constructed with a low‐rise podium structure possess some architectural merits but the setback features of such a building complex may lead to seismic response enlargement of the main buildings. This paper explores the possibility of using passive friction dampers to connect the podium structure to the main buildings to prevent their seismic response enlargement without violating the architectural features. A series of shaking table tests were carried out on one 3‐storey and one 12‐storey building models in fully‐separated, rigidly connected, and friction damper‐linked configurations. Four sets of seismic ground motions were selected as inputs to the shaking table. The control competence of two buildings linked with friction damper was evaluated by comparison of their responses with those from fully‐separated and rigidly connected cases. Experimental results showed that unfavourable seismic response amplification did occur in the building complex in the rigidly connected case. By contrast, friction damper showed effectiveness in reducing absolute acceleration and interstorey drift responses of both buildings if friction force level was appropriately applied. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

11.
This paper presents a comparison between subsurface impedance models derived from different deterministic and geostatistical seismic inversion methodologies applied to a challenging synthetic dataset. Geostatistical seismic inversion methodologies nowadays are common place in both industry and academia, contrasting with traditional deterministic seismic inversion methodologies that are becoming less used as part of the geo‐modelling workflow. While the first set of techniques allows the simultaneous inference of the best‐fit inverse model along with the spatial uncertainty of the subsurface elastic property of interest, the second family of inverse methodology has proven results in correctly predicting the subsurface elastic properties of interest with comparatively less computational cost. We present herein the results of a benchmark study performed over a realistic three‐dimensional non‐stationary synthetic dataset in order to assess the performance and convergence of different deterministic and geostatistical seismic inverse methodologies. We also compare and discuss the impact of the inversion parameterisation over the exploration of the model parameter space. The results show that the chosen seismic inversion methodology should always be dependent on the type and quantity of the available data, both seismic and well‐log, and the complexity of the geological environment versus the assumptions behind each inversion technique. The assessment of the model parameter space shows that the initial guess of traditional deterministic seismic inversion methodologies is of high importance since it will determine the location of the best‐fit inverse solution.  相似文献   

12.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

13.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the dynamic response of three sample buildings belonging to the Seismic Observatory for Structures, the Italian network for the permanent seismic monitoring of strategic structures, managed by the Italian Department of Civil Protection. The case studies cover different building types that could loosely represent the Italian building stock, with a special emphasis on cultural heritage and masonry structures. Observed under a low‐intensity seismic swarm comprising about 30 aftershocks after a main event, the three buildings are analysed through an input–output, model‐driven linear dynamic identification procedure, depicting the relation between the shaking level at the site and the variation of the equivalent structural modal parameters, while keeping into account the effects of soil–structure interaction. Finite element models will be used to investigate one of the case studies and to compare the law of variation of the structural modal parameters with respect to simplified models proposed by technical standards. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents the main results of the evaluation of residual inter‐story drift demands in typical moment‐resisting steel buildings designed accordingly to the Mexican design practice when subjected to narrow‐band earthquake ground motions. Analytical 2D‐framed models representative of the study‐case buildings were subjected to a set of 30 narrow‐band earthquake ground motions recorded on stations placed in soft‐soil sites of Mexico City, where most significant structural damage was found in buildings as a consequence of the 1985 Michoacan earthquake, and scaled to reach several levels of intensity to perform incremental dynamic analyses. Thus, results were statistically processed to obtain hazard curves of peak (maximum) and residual drift demands for each frame model. It is shown that the study‐case frames might exhibit maximum residual inter‐story drift demands in excess of 0.5%, which is perceptible for building's occupants and could cause human discomfort, for a mean annual rate of exceedance associated to peak inter‐story drift demands of about 3%, which is the limiting drift to avoid collapse prescribed in the 2004 Mexico City Seismic Design Provisions. The influence of a member's post‐yield stiffness ratio and material overstrength in the evaluation of maximum residual inter‐story drift demands is also discussed. Finally, this study introduces response transformation factors, Tp, that allow establishing residual drift limits compatible with the same mean annual rate of exceedance of peak inter‐story drift limits for future seismic design/evaluation criteria that take into account both drift demands for assessing a building's seismic performance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Earthquake simulation technologies are advancing to the stage of enabling realistic simulations of past earthquakes as well as characterizations of more extreme events, thus holding promise of yielding novel insights and data for earthquake engineering. With the goal of developing confidence in the engineering applications of simulated ground motions, this paper focuses on validation of simulations for response history analysis through comparative assessments of building performance obtained using sets of recorded and simulated motions. Simulated ground motions of past earthquakes, obtained through a larger validation study of the Southern California Earthquake Center Broadband Platform, are used for the case study. Two tall buildings, a 20‐story concrete frame and a 42‐story concrete core wall building, are analyzed under comparable sets of simulated and recorded motions at increasing levels of ground motion intensity, up to structural collapse, to check for statistically significant differences between the responses to simulated and recorded motions. Spectral shape and significant duration are explicitly considered when selecting ground motions. Considered demands include story drift ratios, floor accelerations, and collapse response. These comparisons not only yield similar results in most cases but also reveal instances where certain simulated ground motions can result in biased responses. The source of bias is traced to differences in correlations of spectral values in some of the stochastic ground motion simulations. When the differences in correlations are removed, simulated and recorded motions yield comparable results. This study highlights the utility of physics‐based simulations, and particularly the Southern California Earthquake Center Broadband Platform as a useful tool for engineering applications.  相似文献   

18.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

20.
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号