首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study introduces the dispersive fluid flux of total fluid mass to the density-driven flow equation to improve thermohaline modeling of salt and heat transports in porous media. The dispersive fluid flux in the flow equation is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The coupled flow, salt transport and heat transport governing equations are numerically solved by a fully implicit finite difference method to investigate solution changes due to the dispersive fluid flux. The numerical solutions are verified by the Henry problem and the thermal Elder problem under a moderate density effect and by the brine Elder problem under a strong density effect. It is found that increment of the maximum ratio of the dispersive fluid flux to the advective fluid flux results in increasing dispersivity for the Henry problem and the brine Elder problem. The effects of the dispersive fluid flux on salt and heat transports under high density differences and high dispersivities are more noticeable than under low density differences and low dispersivities. Values of quantitative indicators such as the Nusselt number, mass flux, salt mass stored and maximum penetration depth in the brine Elder problem show noticeable changes by the dispersive fluid flux. In the thermohaline Elder problem, the dispersive fluid flux shows a considerable effect on the shape and the number of developed fingers and makes either an upwelling or a downwelling flow in the center of the domain. In conclusion, for the general case that involves strong density-driven flow and transport modeling in porous media, the dispersive fluid flux should be considered in the flow equation.  相似文献   

2.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

3.
The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity.  相似文献   

4.
A precise value of the matrix-fracture transfer shape factor is essential for modeling fluid flow in fractured porous media by a dual-porosity approach. The slightly compressible fluid shape factor has been widely investigated in the literature. In a recent study, we have developed a transfer function for flow of a compressible fluid using a constant fracture pressure boundary condition [Ranjbar E, Hassanzadeh H, Matrix-fracture transfer shape factor for modeling flow of a compressible fluid in dual-porosity media. Adv Water Res 2011;34(5):627-39. doi:10.1016/j.advwatres.2011.02.012]. However, for a compressible fluid, the consequence of a pressure depletion boundary condition on the shape factor has not been investigated in the previous studies. The main purpose of this paper is, therefore, to investigate the effect of the fracture pressure depletion regime on the shape factor for single-phase flow of a compressible fluid. In the current study, a model for evaluation of the shape factor is derived using solutions of a nonlinear diffusivity equation subject to different pressure depletion regimes. A combination of the heat integral method, the method of moments and Duhamel’s theorem is used to solve this nonlinear equation. The developed solution is validated by fine-grid numerical simulations. The presented model can recover the shape factor of slightly compressible fluids reported in the literature. This study demonstrates that in the case of a single-phase flow of compressible fluid, the shape factor is a function of the imposed boundary condition in the fracture and its variability with time. It is shown that such dependence can be described by an exponentially declining fracture pressure with different decline exponents. These findings improve our understanding of fluid flow in fractured porous media.  相似文献   

5.
The matrix–fracture transfer shape factor is one of the important parameters in the modeling of fluid flow in fractured porous media using a dual-porosity concept. Warren and Root [36] introduced the dual-porosity concept and suggested a relation for the shape factor. There is no general relationship for determining the shape factor for a single-phase flow of slightly compressible fluids. Therefore, different studies reported different values for this parameter, as an input into the flow models. Several investigations have been reported on the shape factor for slightly compressible fluids. However, the case of compressible fluids has not been investigated in the past. The focus of this study is, therefore, to find the shape factor for the single-phase flow of compressible fluids (gases) in fractured porous media. In this study, a model for the determination of the shape factor for compressible fluids is presented; and, the solution of nonlinear gas diffusivity equation is used to derive the shape factor. The integral method and the method of moments are used to solve the nonlinear governing equation by considering the pressure dependency of the viscosity and isothermal compressibility of the fluid. The approximate semi-analytical model for the shape factor presented in this study is verified using single-porosity, fine-grid, numerical simulations. The dependency of the shape factor on the gas specific gravity, pressure and temperature are also investigated. The theoretical analysis presented improves our understanding of fluid flow in fractured porous media. In addition, the developed matrix–fracture transfer shape factor can be used as an input for modeling flow of compressible fluids in dual-porosity systems, such as naturally fractured gas reservoirs, coalbed methane reservoirs and fractured tight gas reservoirs.  相似文献   

6.
7.
含混合裂隙、孔隙介质的纵波衰减规律研究   总被引:4,自引:4,他引:0       下载免费PDF全文
地下多孔介质中的孔隙类型复杂多样,既有硬孔又有扁平的软孔.针对复杂孔隙介质,假设多孔介质中同时含有球型硬孔和两种不同产状的裂隙(硬币型、尖灭型裂隙),当孔隙介质承载载荷时,考虑两种不同类型的裂隙对于孔隙流体压力的影响,建立起Biot理论框架下饱和流体情况含混合裂隙、孔隙介质的弹性波动方程,并进一步求取了饱和流体情况下仅由裂隙引起流体流动时的含混合裂隙、孔隙介质的体积模量和剪切模量,随后,在此基础上讨论了含混合裂隙、孔隙介质在封闭条件下地震波衰减和频散的高低频极限表达式.最后计算了给定模型的地震波衰减和频散,发现地震波衰减曲线呈现"多峰"现象,速度曲线为"多频段"频散.针对该模型分析讨论了渗透率参数、裂隙纵横比参数以及流体黏滞性参数对于地震波衰减和频散的影响,表明三个参数均为频率控制参数.  相似文献   

8.
IntroductionThesignificantefectofhighporepresurewithinafaultwasfirstproposedbytheAmericanscientistswhentheystudiedonthestresi...  相似文献   

9.
An understanding of strain wave propagation in fluid containing porous rocks is important in reservoir geophysics and in the monitoring in underground water in the vicinity of nuclear and toxic waste sites, earthquake prediction, etc. Both experimental and theoretical research are far from providing a complete explanation of dissipation mechanisms, especially the observation of an unexpectedly strong dependence of attenuationQ –1 on the chemistry of the solid and liquid phase involved. Traditional theories of proelasticity do not take these effects into account. In this paper the bulk of existing experimental data and theoretical models is reviewed briefly in order to elecidate the effect of environmental factors on the attenuation of seismic waves. Low fluid concentrations are emphasized. Thermodynamical analysis shows that changes in surface energy caused by weak mechanical disturbances can explain observed values of attenuation in real rocks. Experimental dissipation isotherms are interpreted in terms of monolayered surface adsorption of liquid films as described by Langmuir's equation.In order to describe surface dissipation in consolidated rocks, a surface tension term is added to the pore pressure term in the O'Connell-Budiansky proelastic equation for effective moduli of porous and fractured rocks. Theoretical calculations by this modified model, using reasonable values for elastic parameters, surface energy, crack density and their geometry, lead to results which qualitatively agree with experimental data obtained at low fluid contents.  相似文献   

10.
The paper is concerned with the propagation of the Love waves in an inhomogeneous transversely isotropic fluid saturated porous layered half-space with linearly varying properties. The analysis is based on Biot's theory. Firstly, the dispersion equation in the complex form for the Love waves in an inhomogeneous porous layer is derived. Then the equation is solved by an iterative method. Detailed numerical calculation is presented for an inhomogeneous fluid saturated porous layer overlying a purely elastic half-space. The dispersion and attenuation of the Love waves are discussed. In addition, the upper and lower bounds of the Love wave speed are explored.  相似文献   

11.
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.  相似文献   

12.
Abstract

It was shown in the previous paper that a sufficiently strong pressure maximum applied to an equilibrium flux surface, by the fields on either side of the surface, produces a gap in the flux surface. The fields on either side make contact through the gap to produce a surface of tangential discontinuity (current sheet). It is shown in the present paper that there is a high speed sheet of fluid and field sliding over the surface of discontinuity when the applied pressure moves slowly across the flux surface. Conditions in the active X-ray corona of the sun suggest that such sheets are generally present, with velocities of the order of 102 km/sec, but with thicknesses too small to be observed. More substantial high speed sheets of fluid may occur in solar flares.  相似文献   

13.
《Advances in water resources》2002,25(8-12):1105-1117
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman–Thigpen–Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress–strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.  相似文献   

14.
In sedimentary rocks attenuation/dispersion is dominated by fluid-rock interactions. Wave-induced fluid flow in the pores causes energy loss through several mechanisms, and as a result attenuation is strongly frequency dependent. However, the fluid motion process governing the frequency dependent attenuation and velocity remains unclear. We propose a new approach to obtain the analytical expressions of pore pressure, relative fluxes distribution and frame displacement within the double-layer porous media based on quasi-static poroelastic theory. The dispersion equation for a P-wave propagating in a porous medium permeated by aligned fractures is given by considering fractures as thin and highly compliant layers. The influence of mesoscopic fluid flow on phase velocity dispersion and attenuation is discussed under the condition of varying fracture weakness. In this model conversion of the compression wave energy into Biot slow wave diffusion at the facture surface can result in apparent attenuation and dispersion within the usual seismic frequency band. The magnitude of velocity dispersion and attenuation of P-wave increases with increasing fracture weakness, and the relaxation peak and maximum attenuation shift towards lower frequency. Because of its periodic structure, the fractured porous media can be considered as a phononic crystal with several pass and stop bands in the high frequency band. Therefore, the velocity and attenuation of the P-wave show an oscillatory behavior with increasing frequency when resonance occurs. The evolutions of the pore pressure and the relative fluxes as a function of frequency are presented, giving more physical insight into the behavior of P-wave velocity dispersion and the attenuation of fractured porous medium due to the wave-induced mesoscopic flow. We show that the specific behavior of attenuation as function of frequency is mainly controlled by the energy dissipated per wave cycle in the background layer.  相似文献   

15.
《水文科学杂志》2013,58(4):868-882
Abstract

Non-Darcian flow in a finite fractured confined aquifer is studied. A stream bounds the aquifer at one side and an impervious stratum at the other. The aquifer consists of fractures capable of transmitting water rapidly, and porous blocks which mainly store water. Unsteady flow in the aquifer due to a sudden rise in the stream level is analysed by the double-porosity conceptual model. Governing equations for the flow in fractures and blocks are developed using the continuity equation. The fluid velocity in fractures is often too high for the linear Darcian flow so that the governing equation for fracture flow is modified by Forcheimer's equation, which incorporates a nonlinear term. Governing equations are coupled by an interaction term that controls the quasi-steady-state fracture—block interflow. Governing equations are solved numerically by the Crank-Nicolson implicit scheme. The numerical results are compared to the analytical results for the same problem which assumes Darcian flow in both fractures and blocks. Numerical and analytical solutions give the same results when the Reynolds number is less than 0.1. The effect of nonlinearity on the flow appears when the Reynolds number is greater than 0.1. The higher the rate of flow from the stream to the aquifer, the higher the degree of nonlinearity. The effect of aquifer parameters on the flow is also investigated. The proposed model and its numerical solution provide a useful application of nonlinear flow models to fractured aquifers. It is possible to extend the model to different types of aquifer, as well as boundary conditions at the stream side. Time-dependent flow rates in the analysis of recession hydrographs could also be evaluated by this model.  相似文献   

16.
Flow and displacement of non-Newtonian fluids in porous media occurs in many subsurface systems, related to underground natural resource recovery and storage projects, as well as environmental remediation schemes. A thorough understanding of non-Newtonian fluid flow through porous media is of fundamental importance in these engineering applications. Considerable progress has been made in our understanding of single-phase porous flow behavior of non-Newtonian fluids through many quantitative and experimental studies over the past few decades. However, very little research can be found in the literature regarding multi-phase non-Newtonian fluid flow or numerical modeling approaches for such analyses.For non-Newtonian fluid flow through porous media, the governing equations become nonlinear, even under single-phase flow conditions, because effective viscosity for the non-Newtonian fluid is a highly nonlinear function of the shear rate, or the pore velocity. The solution for such problems can in general only be obtained by numerical methods.We have developed a three-dimensional, fully implicit, integral finite difference simulator for single- and multi-phase flow of non-Newtonian fluids in porous/fractured media. The methodology, architecture and numerical scheme of the model are based on a general multi-phase, multi-component fluid and heat flow simulator — TOUGH2. Several rheological models for power-law and Bingham non-Newtonian fluids have been incorporated into the model. In addition, the model predictions on single- and multi-phase flow of the power-law and Bingham fluids have been verified against the analytical solutions available for these problems, and in all the cases the numerical simulations are in good agreement with the analytical solutions. In this presentation, we will discuss the numerical scheme used in the treatment of non-Newtonian properties, and several benchmark problems for model verification.In an effort to demonstrate the three-dimensional modeling capability of the model, a three-dimensional, two-phase flow example is also presented to examine the model results using laboratory and simulation results existing for the three-dimensional problem with Newtonian fluid flow.  相似文献   

17.
In this paper, we extend the previous studies of semi-brittle flow of synthetic calcite-quartz aggregates to a range of temperatures and effective pressures where viscous creep occurs. Triaxial deformation experiments were performed on hot-pressed calcite-quartz aggregates containing 10, 20 and 30 wt% quartz at confining pressure of 300 MPa, pore pressures of 50-290 MPa, temperatures of 673-1073 K and strain rates of 3.0×10−5/s, 8.3×10−5/s and 3.0×10−4/s. Starting porosity varied from 5 to 9%. We made axial and volumetric strain measurements during the mechanical tests. Pore volume change was measured by monitoring the volume of pore fluid that flows out of or into the specimen at constant pore pressure. Yield stress increased with decreasing porosity and showed a dependence on effective pressure. Thus, the yield stress versus effective pressure can be described as a yield surface with negative slope that expands with decreasing porosity and increasing strain hardening, gradually approaching the envelope of strength at 10% strain, which has a positive slope. Creep of porous rock can be modeled to first order as an isolated equivalent void in an incompressible nonlinear viscous matrix. An incremental method is used to calculate the stress-strain curve of the porous material under a constant external strain rate. The numerical simulations reproduce general trends of the deformation behavior of the porous rock, such as the yield stress decreasing with increasing effective pressure and significant strain hardening at high effective pressure. The drop of yield stress with increasing porosity is modeled well, and so is the volumetric strain rate, which increases with increasing porosity.  相似文献   

18.
《Advances in water resources》2007,30(6-7):1648-1667
A new simulator is developed for the prediction of the rate and pattern of growth of biofilms in granular porous media. The biofilm is considered as a heterogeneous porous material that exhibits a hierarchy of length scales. An effective-medium model is used to calculate the local hydraulic permeability and diffusion coefficient in the biofilm, as functions of the local geometric and physicochemical properties. The Navier–Stokes equations and the Brinkman equation are solved numerically to determine the velocity and pressure fields within the pore space and the biofilm, respectively. Biofilm fragments become detached if they are exposed to shear stress higher than a critical value. The detached fragments re-enter into the fluid stream and move within the pore space until they exit from the system or become reattached to downstream grain or biofilm surfaces. A Lagrangian-type simulation is used to determine the trajectories of detached fragments. The spatiotemporal distributions of a carbon source, an electron acceptor and a cell-to-cell signaling molecule are determined from the numerical solution of the governing convection–diffusion–reaction equations. The simulator incorporates growth and apoptosis kinetics for the bacterial cells and production and lysis kinetics for the EPS. The specific growth rate of active bacterial cells depends on the local concentrations of nutrients, mechanical stresses, and a quorum sensing mechanism. Growth-induced deformation of the biofilms is implemented with a cellular automaton approach. In this work, the spatiotemporal evolution of biofilms in the pore space of a 2D granular medium is simulated under high flow rate and nutrient-rich conditions. Transient changes in the pore geometry caused by biofilm growth lead to the formation of preferential flowpaths within the granular porous medium. The decrease of permeability caused by clogging of the porous medium is calculated and is found to be in qualitative agreement with published experimental results.  相似文献   

19.
Abstract

We present a mathematical model for the flow of a partial melt through its solid phase. The model is based on the conservation laws of two-phase flow, which reduce to a generalization of porous flow in a permeable medium, when the solid matrix deforms very slowly. The continuity equation for the melt contains a source term (due to melting), which is determined by the energy equation. In addition, the melt fraction is unknown, and a new equation, representing conservation of pore space, is introduced. This equation may also be thought of as a constitutive law for the melt pressure (which is not lithostatic).

The model is non-dimensionalized and simplified. Some simple solutions are considered, and it is suggested that the occurrence of high fluid pressures in the solutions may initiate fractures in the lithosphere, thus providing a starting-up mechanism for magma ascent to the surface.  相似文献   

20.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号