首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Upper Rhine Graben (URG) is characterized by a thickness of up to 500 m of unconsolidated Quaternary sediments, providing excellent records of the Rhine river system and its responses to tectonic and climatic changes. The most complete Quaternary sequence of fluvial and limnic-fluvial deposits is found in the Heidelberg Basin, due to its long-term subsidence since the mid-Eocene. The aim of this study is to provide a chronological framework using optically stimulated luminescence (OSL) dating of aeolian and fluvial sands derived from the upper 33 m of a sediment core, which was drilled into the Heidelberg Basin infill close to the village of Viernheim, Germany. The OSL ages demonstrate that the dated fluvial sediments were deposited during the last glacial period (Weichselian) and that there were at least three aggradation periods during this episode. The coversands that cap the sequence were emplaced during the early Holocene.  相似文献   

2.
Approximately 13 km south of Gulf Shores, Alabama (United States), divers found in situ baldcypress (Taxodium distichum) stumps 18 m below the ocean surface. These trees could have only lived when sea level fell during the Pleistocene subaerially exposing the tectonically stable continental shelf. Here we investigate the geophysical properties along with microfossil and stratigraphical analyses of sediment cores to understand the factors that lead to this wood’s preservation. The stumps are exposed in an elongated depression (~100 m long, ~1 m deep) nested in a trough of the northwest–southeast trending Holocene sand ridges and troughs with 2–5 m vertical relief and ~0.5 km wavelength. Radiocarbon ages of the wood were infinite thus optically stimulated luminescence (OSL) dating was used to constrain the site’s age. Below the Holocene sands (~0.1–4 m thick), separated by a regional erosional unconformity, are Late Pleistocene mud-peat (72±8 ka OSL), mud-sand (63±5, 73±6 ka OSL), and palaeosol (56±5 ka OSL) facies that grade laterally from west to east, respectively. Foraminiferal analysis reveals the location of the terrestrial-marine transitional layer above the Pleistocene facies in an interbedded sand and mud facies (3940±30 (1σ) 14C a BP), which is part of a lower shoreface or marine-dominated estuarine environment. The occurrence of palaeosol and swamp facies of broadly similar ages and elevation suggests the glacial landscape possessed topographic relief that allowed wood, mud and peats to be preserved for ~50 ka of subaerial exposure before transitioning to the modern marine environment. We hypothesize that rapid sea-level rise occurring ~60 or ~40 ka ago provided opportunities for local flood-plain aggradation to bury the swamp thus preserving the stumps and that other sites may exist in the northern Gulf of Mexico shelf.  相似文献   

3.
The response of fluvial systems to tectonic activity and climate change during the Late Pleistocene influenced sedimentary processes and hence the conditions of river terraces formation. The northern Alpine foreland is well adapted for such studies due to the high sediment input and the variety of depositional environments. This study focuses on sediments of a part of the Rhine River in the area of Basel, at the Border between Switzerland, Germany and France. A detailed evolution of the Lower Terrace is inferred from sedimentological, geomorphologic and pedological observations as well as historical documents, and calibrated using different dating methods (optically stimulated luminescence, uranium series disequilibrium, radiocarbon). The Lower Terrace was deposited during two periods (30–15 ka and 13–11 ka), which correlate with two cold climatic phases, representing the Last Glaciation of the Alps and the Younger Dryas. These ages underline that main incision of the Lower Terrace braidplain in the area of Basel is restricted to post Younger Dryas times, as sediments of that age (13–11 ka) are found atop the highest levels. From then on, a flight of cut-terraces were formed with minor re-accumulation due to Holocene flood events. These findings demonstrate that the surface of a terrace does not always represent the age of sediment aggradation, and this should be remembered when using terraces to reconstruct the tectonic history of an area.  相似文献   

4.
天山乌鲁木齐河源末次冰期冰川沉积光释光测年   总被引:6,自引:5,他引:1  
乌鲁木齐河源地区是中国冰川遗迹保存最丰富、地貌最典型的区域之一,是根据冰川遗迹重建第四纪冰川历史的理想地区。大量的研究工作以及技术测年结果也使其成为试验冰川沉积光释光(optically stimulated luminescence,OSL)测年可行性的理想地点。共采集了6个冰碛及上覆黄土样品用于光释光测年。提取38~63 μm的石英颗粒,运用SAR-SGC法测试等效剂量。各种检验表明测试程序是适用的。通过地貌地层关系、重复样品、已有年代的对比等方法,检验该地冰川沉积OSL测年的可行性。结果表明,OSL年代结果与地貌地层新老关系非常吻合,与已有的其他测年技术的年代结果也具可比性,表明这些样品的OSL信号在沉积之前晒退较好,OSL年代是可信的。冰川观测站侧碛垄的OSL年代为14.8±1.2 ka;9号冰川支谷口附近冰碛的OSL年代为13.5±1.1 ka和17.2±1.3 ka;上望峰冰碛的OSL年代为20.1±1.6 ka。综合OSL年代结果与此前其他测年结果,这几套冰碛垄形成于深海氧同位素MIS 2阶段应该是比较统一的认识。上望峰冰碛上覆黄土的OSL年代(10.5±0.8 ka)也印证了该结论。OSL年代指示上望峰冰碛对应于末次冰期最盛期,冰川观测站和9号冰川支谷谷口冰碛对应于晚冰期。下望峰冰碛的OSL年代为36.3±2.8 ka,对应于MIS 3阶段。下望峰冰碛的形成时代,仍有待更多沉积学以及测年工作进一步确定。  相似文献   

5.
The technique of optically stimulated luminescence (OSL) dating applied to fluvial sediments provided a geochronological framework of river terrace formation in the middle part of the Dunajec River basin – a reference area for studies of evolution of river valleys in the northern part of the Carpathians (West Carpathians). Fluvial sediments at 18–90 m above valley bottoms were dated in the valleys of the Dunajec River and one of its tributaries. The resulting ages range from 158.9±8.3 to 12.2±1.3 ka. This indicates that some of the terrace sediments were deposited much later than previously assumed on the grounds of a combined morphostratigraphical and climatostratigraphical approach. The OSL‐based chronostratigraphy of terrace formation consists of seven separate phases of fluvial aggradation, separated by periods of incision and lateral erosion. Some of the ages determined correspond to warm stages of the Pleistocene – Marine Isotope Stage 3 (MIS 3) and MIS 5 – demonstrating that some terraces were formed during interstadial or interglacial periods. The results provide a key for evaluating rates of neotectonic uplift, allowing us to decipher the response of a fluvial system to climate change within the context of the glacial–interglacial scheme.  相似文献   

6.
《Quaternary Science Reviews》2003,22(10-13):1207-1211
The time-integrated slip rate in fault zones can be determined if the deformed deposits are reliably dated. Here, we report optically stimulated luminescence (OSL) ages of Late Pleistocene fluvial deposits cut by the Wangsan fault, southeastern Korea, which displaces a hanging wall block of about 28 m. Five sandy samples of the deformed Quaternary deposits were dated by quartz OSL using the single aliquot regenerative-dose (SAR) protocol. Three samples taken from the footwall block show stratigraphically consistent OSL ages of 54±7, 76±5 and 90±6 ka, from top to bottom. Two samples collected from the same layer in the hanging wall block show reproducible OSL ages of 81±5 and 82±5 ka, which are also in good agreement with the stratigraphic relationships. Our OSL ages yield an average sedimentation rate of the Quaternary deposits as around 0.04 mm a−1, and a minimum value of time-integrated slip rate as 0.52 mm a−1. This minimum slip rate is considerably higher than those reported earlier for Quaternary faults in southeastern Korea. The youngest OSL age (54±7 ka) constrains the maximum value of the recurrence interval of the fault movement.  相似文献   

7.
8.
In the northern part of the Upper Rhine Graben (URG), a high-resolution seismic reflection survey was carried out on the Rhine River over a length of 80 km, and on its tributary Neckar over a length of 25 km. The seismic investigation provides new results to redefine the base of Quaternary fluvial sediments from Oppenheim upstream to the south of Mannheim. The standard Quaternary thickness map of Bartz (1974) was partially revised and completed. Maximum Pleistocene sediment thickness is documented in the area of Mannheim with approximately 225 m. The top of the Pliocene in this area is sub-horizontal and not faulted, and rises downstream continuously towards the fault block of Worms. Intercalated lacustrine pelitic layers play a main role in defining the litho-stratigraphy in this part of the URG. In the north of Worms, Pleistocene sediments are mainly coarse-grained. In the area of Worms, a Pleistocene tectonic phase along N–S striking normal faults with variable displacement along the strike is obvious.  相似文献   

9.
晚更新世以来渤海南部莱州湾发生了3次重要海侵-海退事件及沉积演化过程,渤海南部多源河流三角洲对莱州湾沉积环境改变作用明显。本文选择莱州湾剖面进行沉积地层对比,结合调查资料和测试数据,初步建立莱州湾沉积地层格架,分析晚更新世以来莱州湾沉积演化过程。研究发现,渤海南部中小河流与黄河泥沙为莱州湾沉积物的共同物质来源,二者在不同阶段分别对莱州湾沉积演化起主导作用。提出本区沉积地层具有分期性、分段性和相关性规律。在124.6~72.0 ka B.P.,60.0~24.4 ka B.P.和10.2~4.0 ka B.P.出现过3次暖湿期,分别对应沧州海侵、献县海侵和黄骅海侵,主要发育滨浅海相沉积,向南退积为三角洲/潮坪—河流沉积;由陆向海,短源河流沉积贡献降低,黄河沉积贡献增加。在72.0~60.0 ka B.P.和24.4~10.2 ka B.P.出现2次冷干期,分别对应玉木早冰期和玉木晚冰期,河流相发育,三角洲进积。受海陆交互作用影响,晚更新世以来渤海南部莱州湾大致经历了浅海相—三角洲—潮坪—浅海相—三角洲—陆相的沉积演化。  相似文献   

10.
The Late Pleistocene stratigraphy from the Severnaya Dvina‐Vychegda region of northwestern Russia is revised based on investigations of new localities, revisiting earlier localities, introduction of about 110 new OSL dates and burial depth corrections of earlier published OSL dates, in addition to six new radiocarbon dates. Most of the OSL samples studied here are from fluvial and subaquaeous sediments, which we found to be well bleached. Six chronostratigraphical units and their sedimentary environment are described, with the oldest unit consisting of pre‐Eemian glacial beds. For the first time, Early Weichselian sediments are documented from the region and a fluvial environment with some vegetation and permafrost conditions is suggested to have persisted from the end of the Eemian until at least about 92 ka ago. The period in which a Middle Weichselian White Sea Lake could have existed is constrained to 67?62 ka, but as the lake level never reached the thresholds of the drainage basin, the lake probably existed only for a short interval within this time‐span. Blocking and reversal of fluvial drainage started again around 21?20 ka ago when the Fennoscandian Ice Sheet advanced into the area, reaching its maximum 17?15 ka ago. At that time, an ice‐dammed lake reached its maximum water level, which was around 135 m above present sea level. Drainage of the lake started shortly after 15 ka ago, and the lake was emptied within 700 years. Severe periglacial conditions, with permafrost and aeolian activity, prevailed in the area until about 10.7 ka.  相似文献   

11.
Finnish Lapland is known as an area where numerous sites with sediments from Pleistocene glacial and interglacial periods occur. Recent sedimentological observations and dating call for reinterpretation of the record, which shows a complicated Mid‐Weichselian ice‐sheet evolution within the ice‐divide zone. Here, a large, previously unstudied section from a former Hannukainen iron mine was investigated sedimentologically and dated with optically stimulated luminescence (OSL). Ten sedimentary units were identified displaying a variety of depositional environments (glacial, glaciolacustrine, fluvial and aeolian). They are all – except for the lowermost, deeply weathered till – interpreted to be of Mid‐ or Late Weichselian/Holocene age. Five OSL samples from fluvial sediments give ages ranging from 55 to 35 ka, indicating two MIS 3 ice‐free intervals of unknown duration. The Mid‐Weichselian interstadial was interrupted by a re‐advance event, which occurred later than 35 ka and caused glaciotectonic deformation, folding and stacking of older sediments. This new evidence emphasizes the importance of the Kolari area when unravelling the complex Late Pleistocene glacial history of northern Finland and adjacent regions.  相似文献   

12.
《Quaternary Science Reviews》2003,22(10-13):1067-1076
This study is concerned with the Late Quaternary climatic chronology of the Strzelecki Desert dunefields in central Australia. The sand ridges comprise layers of quartz sand, some of which include palaeosol horizons with carbonated rootlets providing excellent opportunity for dating of alternations of dune building and stability by using optically stimulated luminescence (OSL). Deduced from the OSL age of the oldest aeolian layer dated, we conclude that the onset of aridity dates back to at least ∼65 ka. Older phases of aeolian activity though, following a fluvial depositional phase 160 ka ago, cannot be excluded, although no aeolian layers giving evidence for this have been found in the two dunes dated here. Unconsolidated dune sands in the upper part of one section with Late Holocene (4 ka to modern) depositional ages indicate a reactivation of the dunefield in recent times.From the crosscheck of 14C ages of the carbonated rootlets with OSL results it is concluded that under the given environmental conditions radiocarbon dating of the calcareous rootlets is not able to provide reliable ages for the phase of soil development.  相似文献   

13.
Quaternary Geology and Faulting in the Damxung-Yangbajain Basin   总被引:7,自引:1,他引:6  
The detailed geological mapping, conducted in the Damxung-Yangbajain basin, shows that there are many types of deposits formed since the Pliocene. The oldest sediments are formed during the Pliocene. The most prominent sediments are three sets of moraines and fluvioglacial deposits. The ESR, U-series and OSL dates indicate they are formed about 700-500 ka B.P., 250-125 ka B.P. and 75-12 ka B.P. respectively and indicate that there are three glacial periods since the mid-Pleistocene in the Nyainqentanglha Range. Along the southeast side of the Nyainqentanglha Range, the main southeast dipping fault zone which bounds the Damxung-Yangbajain Graben on its western edge was mapped. The fault zone consists of three secondary fault zones and their initiation ages that the fault zones became active gradually decrease southeastward. Prominent faulting occurred in about 700-500 ka B.P., 350-220 ka B.P., -140 ka B.P. and 70-50 ka B.P. since the mid-Pleistocene. The height of fault scarps which offset the sediments f  相似文献   

14.
The Weichselian Late Pleniglacial and Lateglacial aeolian stratigraphy (Older Coversand I, Beuningen Gravel Bed, Older Coversand II, Younger Coversand I, Usselo Soil, Younger Coversand II) in the southern Netherlands has been reinvestigated in its type locality (Grubbenvorst). Sedimentary environments have been reconstructed and related to their climatic evolution based on periglacial structures. In addition, 22 optically stimulated luminescence (OSL) ages have been determined that provide an absolute chronology for the climatic evolution and environmental changes of the coversand area. From this work it appears that, prior to 25 ka fluvial deposition by the Maas dominated. After 25 ka fluvial activity reduced and deposition occurred in a fluvio‐aeolian environment with continuous permafrost (Older Coversand I). This depositional phase was dated between 25.2 ± 2.0 and 17.2 ± 1.2 ka. The upward increase of aeolian activity and cryogenic structures in this unit is related to an increase of climatic aridity and a decrease in sedimentation rate during the Last Glacial Maximum (LGM). The Beuningen Gravel Bed, that results from deflation with polar desert conditions and that represents a stratigraphic marker in northwestern Europe, was bracketed between 17.2 ± 1.2 and 15.3 ± 1.0 ka. Based on this age result a correlation with Heinrich event H1 is suggested. Permafrost degradation occurred at the end of this period. Optical ages for the Older Coversand II unit directly overlying the Beuningen Gravel Bed range from 15.3 ± 1.0 ka at the base to 12.7 ± 0.9 ka at the top. Thus this regionally important Older Coversand II unit started at the end of the Late Pleniglacial and continued throughout the early Lateglacial. Its formation after the Late Pleniglacial (LP) maximum cold and its preservation are related to rapid climatic warming around 14.7 ka cal. BP. The Allerød age of the Usselo Soil was confirmed by the optical ages. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Glacial landforms and sediments mapped in three presently unglaciated mountain massifs, the Nanhuta Shan, the Hsueh Shan and the Yushan, support the concept of repeated, multi-stage glaciations in the Taiwanese high mountain range during the late Pleistocene. New results from surface exposure dating using in situ produced cosmogenic 10Be measured in samples taken from erratic and moraine boulders in Nanhuta Shan at altitudes between 3100 and 3500 m are presented here. The results confirm independent and previously reported Optically Stimulated Luminescence (OSL) ages and 10Be exposure ages from glacial deposits in the same area and suggest a Lateglacial and early Holocene glaciation, the so called Nanhuta glacier advance with two substages at about 12–15 ka and 9.5 ka BP. The respective equilibrium line altitudes (ELA) were calculated at 3340 m and 3440 m with corresponding ELA depressions of 610 ± 100 m and 510 ± 100 m relative to the present day (theoretical) ELA, which is estimated to be at about 3950 ± 100 m in Taiwan. Large-scale erosional landforms indicate a much wider glacier extent during an earlier stage, which is not dated in Nanhuta Shan so far. Luminescence dating from near Hsueh Shan suggests an age of marine isotope stage (MIS) 4 for this stage.  相似文献   

16.
The Late Pleistocene was characterized by rapid climate oscillations with alternation of warm and cold periods that lasted up to several thousand years. Although much work has been carried out on the palaeoclimate reconstruction, a direct correlation of ice‐core, marine and terrestrial records is still difficult. Here we present new data from late Middle Pleniglacial to Lateglacial alluvial‐fan and aeolian sand‐sheet deposits in northwestern Germany. Records of Late Pleniglacial alluvial fans in central Europe are very rare, and OSL dating is used to determine the timing of fan aggradation. In contrast to fluvial systems that commonly show a delay between climate change and incision/aggradation, the small alluvial‐fan systems of the Senne area responded rapidly to climatic changes and therefore act as important terrestrial climate archives for this time span. The onset of alluvial‐fan deposition correlates with the climate change from warm to cold at the end of MIS 3 (29.3±3.2 ka). Strong fan progradation started at 24.4±2.8 ka and may be related to a period of higher humidity. The vertical stacking pattern of sedimentary facies and channel styles indicate a subsequrent overall decrease in water and sediment supply, with less sustained discharges and more sporadic runoffs from the catchment area, corresponding to an increasing aridity in central Europe during the Late Pleniglacial. Major phases of channel incision and fan aggradation may have been controlled by millennial‐scale Dansgaard–Oeschger cycles. The incision of channel systems is attributed to unstable climate phases at cold–warm (dry–wet) or warm–cold (wet–dry) transitions. The alluvial‐fan deposits are bounded by an erosion surface and are overlain by aeolian sand‐sheets that were periodically affected by flash‐floods. This unconformity might be correlated with the Beuningen Gravel Bed, which is an important marker horizon in deposits of the Late Pleniglacial resulting from deflation under polar desert conditions. The deposition of aeolian sand‐sheet systems (19.6±2.1 to 13.1±1.5 ka) indicates a rapid increase in aridity at the end of the Late Pleniglacial. Intercalated flash‐floods deposits and palaeosols (Finow type) point to temporarily wet conditions during the Lateglacial. The formation of an ephemeral channel network probably marks the warm‐cold transition from the Allerød to the Younger Dryas.  相似文献   

17.
In this paper, we employed optically stimulated luminescence (OSL) dating of sediments from two archaeological sites located in Navarino, Messenia, southwestern Greece, to deduce a chronology for the archaeological sites. Archaeological surveys identified two Paleolithic sites on fossilized coastal dunes. Chipped stone tool assemblages were identified eroding out of paleosols developed in the dunes. The assemblage from one site lacked distinct typological features and hence it was difficult to assign to a chronological period. The lithic assemblage from the other site contained artifacts that typologically can be assigned to the Levallois‐Mousterian. Previous efforts to date the artifact‐bearing sediments at these sites were unsuccessful. Using newer OSL dating methods (i.e., the Single‐Aliquot‐Regenerated Dose protocol and thermally transferred‐OSL[TT‐OSL]), we attempted to construct a chronological framework for Late Pleistocene human activity in the southwest Peloponnese. The revised OSL chronology for the first site is 28 ± 5 ka, while a luminescence age of 8 ± 1 ka for the second site only represents a later deflation event. Within the framework of Quaternary environmental change, the location of Paleolithic sites relative to the coast would have changed during the course of the Pleistocene. As a result, Paleolithic exploitation strategies would have been strongly influenced by the changing coastal geomorphology, encouraging hominids to adapt to new distributions of resources. OSL dating of the archaeological sites allowed us to connect traces of hominid activity with climatic stadials/interstadials of the later Pleistocene derived from existing relative sea‐level curves. Ultimately, these data permitted the reconstruction of regional Late Pleistocene paleogeography. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Pleistocene aeolian sands and alluvial deposits can frequently be traced along the Mediterranean coast. Such deposits also exist along the eastern Adriatic coast and the nearby islands. Four stratigraphical sections of these deposits were studied on the Island of Hvar with the purpose of establishing a chronological framework of the aeolian–alluvial depositional system, using luminescence dating and magnetic susceptibility stratigraphy. Luminescence dating was applied on coarse‐grained feldspar and quartz grains separated from the sands. Both quartz optically stimulated luminescence (OSL) and feldspar post‐IR infrared stimulated luminescence (pIRIR) age estimates are in good agreement, with values ranging between 167±24 to 120±12 ka (OSL) and 179±18 to 131±18 ka (pIRIR measured at 290 °C) after a fading correction for the pIRIR signal. The results can be clearly correlated to around the end of oxygen isotope stage (OIS) 6 and the beginning of OSI 5, indicating that the aeolian accumulation of sands was a result of the Penultimate Glacial and climate fluctuations at the beginning of the Last Interglacial. Variations in magnetic susceptibility (MS) data can be interpreted alongside these dating results; several stronger peaks detected at the very end of the Penultimate Glacial and the initial stage of the Last Interglacial cycle most probably indicates more intensive pedogenesis resulting from a more favourable climate, probably because of climate changes. Breccias related to major bounding surfaces in association with evidence of soil formation and bioturbation could be the result of more favourable climate conditions and changes during the transition from OIS 6 to OIS 5 (Penultimate Glacial–Last Interglacial). These results are in agreement with similar data from the wider Mediterranean area.  相似文献   

19.
The Zhangjiajie Sandstone Peak Forest Geopark (Zhangjiajie World Geopark) of northwest Hunan, China hosts a well-preserved sequence of fluvial terraces and karst caves. In this contribution, a comparative study of fluvial terraces with karst caves along the middle-lower Suoxi River in Zhangjiajie World Geopark is presented to improve the understanding of the development of striking sandstone landscape in the upper Suoxi River. By integrating geomorphological, sedimentological, and geochronological techniques, the possible correlation between fluvial terraces and karst caves, as well as their climatic and tectonic implications is investigated. The available electron spin resonance and thermo-luminescence numerical ages coupled with morphostratigraphic analysis indicate that aggradation of fluvial terrace levels occurred at ca. 347 ± 34 ka (T4), 104.45 ± 8.88 to 117.62 ± 9.99 ka (T3), 60.95 ± 5.18 ka (T2), and Holocene (T1), followed by the stream incision. Fluvial terrace levels (T4 to T1) correlate morphologically with the karst cave levels (L1 to L4), yet the proposed chronology for the fluvial terrace levels is a bit later than the chronological data obtained from karst caves. In northwest Hunan, where a unique sandstone peak forest landscape was extensively developed, the fluvial terrace sequences as well as the cave systems are the important archives for studying the evolution of the sandstone landscape. The beginning of the sandstone landscape development must be earlier than the aggradation of the fluvial terrace T4, allowing this unique landscape to occur in the Middle Pleistocene.  相似文献   

20.
松辽平原东部受第四纪差异性构造活动影响,形成特殊的更新世沉积地层。由于第四纪划分方案和地域差异,松辽平原东部中、晚更新世界限仍处于不确定状态。通过黑龙江省方正剖面的研究、中更新统顶部(149.6±10.4) ka光释光年龄和主要氧化物、微量元素、稀土元素分析以及区域剖面对比,认为将松辽盆地东缘中、晚更新世的界限年龄置于140 ka更适合地层实际情况。中更新世地层以河湖相、河流相和洪积相沉积物为主,完整的晚更新世地层应该包括下部的沼泽漫滩相黏土、亚黏土和上部亚砂土、黄土沉积。黑龙江省荒山剖面哈尔滨组下部可能由于相变而缺少沼泽漫滩相的沉积物。方正剖面与榆树东岗组剖面地层可以对比。中、晚更新世沉积环境发生了明显变化,主要氧化物、微量元素和稀土元素含量在中、晚更新世的地层界限处都发生了明显的突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号