首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We inferred past climate conditions from the δ13C and δ15N of organic matter (OM) in a sediment core (DP-2011-02) from the sub-alpine Daping Swamp, in the western Nanling Mountains, South China. In the study region, a 1000-m increase in altitude results in a ~0.75‰ decrease in δ13C and a ~2.2‰ increase in δ15N. Organic carbon stable isotope (δ13C) values of the dominant modern vegetation species, surface soils, and the core samples taken in the swamp exhibit a strong terrestrial C3 plant signature. Comprehensive analysis of the core indicates both terrestrial and aquatic sources contribute to the OM in sediment. Temperature and precipitation are most likely the critical factors that influence δ13C: warm and wet conditions favor lower δ13C, whereas a dry and cool climate leads to higher δ13C values. Higher δ15N values may result from greater water depth and increased primary productivity, promoted by large inputs of dissolved inorganic nitrogen, induced by high surface runoff. Lower δ15N values are associated with lower lake stage and reduced productivity, under drier conditions. Therefore, stratigraphic shifts in these stable isotopes were used to infer past regional climate. Measures of δ13C and δ15N in deglacial deposits, in combination with total organic carbon (TOC) and nitrogen (TN) concentrations, the TOC/TN ratio, coarse silt and sand fractions, dry bulk density and low-frequency mass magnetic susceptibility, reveal two dry and cold events at 15,400–14,500 and 13,000–11,000 cal a BP, which correspond to Heinrich event 1 and the Younger Dryas, respectively. A pronounced warm and wet period that occurred between those dry episodes, from 14,500 to 13,000 cal a BP, corresponds to the Bølling–Allerød. The δ13C and δ15N data, however, do not reflect a warm and wet early Holocene. The Holocene optimum occurred between ~8000 and 6000 cal a BP, which is different from inferences from the nearby Dongge cave stalagmite δ18O record, but consistent with our previous results. This study contributes to our understanding of climate-related influences on δ13C and δ15N in OM of lake sediments in South China.  相似文献   

2.
Sediment variables total organic carbon (TOC), total nitrogen (TN), total sulfur (TS), as well as their accumulation rates and atomic ratios (C/N and C/S), were studied along with stable isotopes (δ13C, δ15N, and δ34S), and specific biomarkers (n-alkanes and pigments) in a 35-cm-long sediment core from Lake Bhimtal, NW India. The average sedimentation rate is 3.6 mm year?1, and the core represents a provisional record of ~100 years of sedimentation history. Bulk elemental records and their ratios indicate that sediment organic matter (OM) is derived primarily from algae. In-lake productivity increased sharply over the last two decades, consistent with paleoproductivity reconstructions from other lakes in the area. An up-core decrease in δ13C values, despite other evidence for an increase in lake productivity, implies that multiple biogeochemical processes (e.g. external input of sewage or uptake of isotopically depleted CO2 as a result of fossil fuel burning) influence the C isotope record in the lake. The δ15N values (?0.2 to ?3.9 ‰) reflect the presence of N-fixing cyanobacteria, and an increase in lake productivity. The δ34S profile shows enrichment of up to 5.6 ‰, and suggests that sulfate reduction occurred in these anoxic sediments. Increases in total n-alkane concentrations and their specific ratios, such as the Carbon Preference Index (CPI) and Terrestrial Aquatic Ratio (TAR), imply in-lake algal production. Likewise, pigments indicate an up-core increase in total concentration and dominance of cyanobacteria over other phytoplankton. Geochemical trends indicate a recent increase in the lake’s trophic state as a result of human-induced changes in the catchment. The study highlights the vulnerability of mountain lakes in the Himalayan region to both natural and anthropogenic processes, and the difficulties associated with reversing trophic state and ecological changes.  相似文献   

3.
We present a paleolimnological record from shallow Lake Wuliangsu in the Yellow River Basin, north China, using a short (56 cm) sediment core. Our objective was to investigate environmental changes in this semi-arid region over the past ~150 years. The sediment core was dated using 137Cs and 210Pb. We examined stratigraphic trends in core lithology, nutrients, stable isotopes (δ13C and δ15N) and trace element concentrations in the Lake Wuliangsu core to discern between natural sediments and those affected by human agency. A lithologic transition from yellow, coarse-grained sediment to grey, fined-grained sediment marked the lake’s formation about 1860. Until ~1950, sediments displayed relatively low and constant heavy metal concentrations, indicating little human influence. In the 1950s, enrichment factors (EFs) increased, reflecting greater impact of human activities. Carbon and nitrogen stable isotopes in organic matter (OM), along with heavy metal concentrations, were used to infer past shifts in trophic state and identify pollutants that came from agriculture, industry and urbanization. In the late 1950s, the first evidence for environmental change is recorded by increases in total organic carbon (TOC), total organic nitrogen (TN), TOC/TN, EFs, δ13C and a decrease in δ15N. After about year 2000, a more rapid increase in trophic status occurred, as indicated by greater total phosphorus (TP), EFs, δ15N and lower δ13C values. Changes in isotope and TOC/TN values in the lake sediments may reflect a shift in lake ecology during this period. The first increase in trophic status during the late 1950s was mainly a result of agricultural development in the catchment. In contrast, the change after ca. AD 2000 was driven largely by urban and industrial development. Agreement between paleolimnologic data from Lake Wuliangsu, and both instrumental and written records, indicates that the lake sediments provide a reliable archive for investigating the formation and environmental history of the lake.  相似文献   

4.
The nitrogen stable isotopic signature (δ15N) of sediment is a powerful tool to understand eutrophication history, but its interpretation remains a challenge. In a large-scale comparative approach, we identified the most important drivers influencing surface sediments δ15N of 65 lakes from two regions of Canada using proxies that reflect watershed nitrogen (N) sources, internal lake microbial cycling and productivity. Across regions, we found that water column total nitrogen (TN),  %N in the sediments and lake morphometric variables were the best predictors of sedimentary δ15N, explaining 66 % of its variation. Significant relationships were also found between sediment δ15N and human-derived N load ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.23, p < 0.001), the latter being a strong predictor of TN ( \( R_{{{\text{adj}} .}}^{2} \)  = 0.68, p < 0.001). Despite a relatively strong overall relationship, variation partitioning revealed an interesting difference in the dominant variable that influenced regional δ15N. Alberta lake sedimentary δ15N signature was dominated by human derived N load. In contrast, internal processing appeared to be more important in Quebec lakes, where sediment δ15N was best explained by  %N in the sediments and lake volume. Overall, our findings support the use of δ15N in paleolimnological investigations to reconstruct changing N sources to lakes but also highlight that regions may have distinctive drivers. Interpretations of sediment δ15N are likely to be strongest when multiple lines of evidence are employed and when placed in a regional context.  相似文献   

5.
We used statistical analyses to determine which subset of 36 environmental variables best explained variations in surface sediment δ13C and δ15N from 50 lakes in western Ireland that span a human-impact gradient. The factors controlling lake sediment δ13C and δ15N depended on whether organics in the lake sediment were mostly derived from the lake catchment (allochthonous) or from productivity within the lake (autochthonous). Lake sediments with a dominantly allochthonous organic source (high C:N ratio sediments) produced δ13C and δ15N measurements similar to values from catchment vegetation. δ13C and δ15N measurements from lake sediments with a dominantly autochthonous organic source (low C:N ratio sediments) were influenced by fractionation in the lake and catchment leading up to assimilation of carbon and nitrogen by lacustrine biota. δ13C values from lake sediment samples in agricultural catchments were more negative than δ13C values from lake sediment samples in non-impacted, bogland catchments. Hypolimnetic oxygen concentrations and methane production had a greater influence on δ13C values than fractionation due to algal productivity. δ15N from lake sediment samples in agricultural catchments were more positive than δ15N in non-impacted bogland catchments. Lower δ15N values from non-impacted lake catchments reflected δ15N values of catchment vegetation, while higher δ15N values in agricultural catchments reflected the high δ15N values of cattle manure and inorganic fertilisers. The influence of changing nitrogen sources and lake/catchment fractionation processes were more important than early diagenesis for lake sediment δ15N values in this dataset. The results from this study suggest a possible influence of bound inorganic nitrogen on the bulk sediment δ15N values. We recommend using a suitable method to control for bound inorganic nitrogen in lake sediments, especially when working with clay-rich sediments. This study confirms the usefulness of δ13C and δ15N from bulk lake sediments, as long as we are mindful of the multiple factors that can influence these values. This study also highlights how stable isotope datasets from lake surface sediments can complement site-specific isotope source/process studies and help identify key processes controlling lake sediment δ13C and δ15N in a study area.  相似文献   

6.
Total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) were determined in combination with stable isotope ratios of carbon and nitrogen (δ13COrg, δ15N) in a 63 cm sediment core from Longgan Lake, located in the middle reaches of the Yangtze River, China. These geochemical and isotopic records provide a continuous history of lake productivity and trophic state of Longgan Lake since 1890. Variations of δ13COrg, TOC, TN and TP indicate that primary productivity of Longgan Lake increased continuously during the last century and that the trophic state of the lake shifted from oligotrophic to mestrotrophic conditions accordingly. Anthropogenic sources of organic carbon (OC), nitrogen (N) and phosphorus (P) were distinguished from their natural background in the sediments using mass accumulation rates. Element mass accumulation rates suggested increased human activities in the lake’s catchment since 1950s, were especially the utilization of artificial fertilizers amplified the anthropogenic input of N and P into the lake. In the course of the improved availability of dissolved nutrients also primary productivity of Longgan Lake increased, resulting in an increase of the Suess-effect corrected organic carbon isotope ratios. δ15N of bulk sediments show a marked shift towards lower values around 1950 that has been attributed to the input of nitrogen from chemical fertilizers characterized by relatively depleted isotopic signatures into the lake.  相似文献   

7.
Freshwater lakes in Antarctica fluctuate from ice-free state (during austral summer) to ice-cover state (during austral winter). Hence the lakes respond instantly to the seasonal climate of the region. The Antarctic seasons respond sharply to the glacial and interglacial climates and these signatures are archived in the lake sediments. A sediment core from Sandy Lake, a periglacial lake located in Schirmacher Oasis of East Antarctica records distinct changes in grain-size, C, N, C/N ratios (atomic), δ13COM and δ15NOM contents during the last 36 ky. The contents of the sedimentary organic matter (OM) proxies (Corg ~ 0.3 ± 0.2%, C/N ratios ~9 ± 5 and δ13COM ~?18 ± 6‰) indicate that the OM in this lake sediment is a product of mixing of terrestrial and lacustrine biomass. Distinctly lower contents of Corg (~0.2%) and sand (~50%), low C/N ratios (~8) and depleted δ13COM (~?20‰) during the Last Glacial Maximum (LGM: 32–17 ky BP based on Vostok Temperatures) suggest greater internal (autochthonous) provenance of organic matter and limited terrestrial (allochthonous) inputs probably due to long and intense winters in the Antarctic. Such intense winters might have resulted the lake surface to be ice-covered for most part of the year when the temperatures remained consistently colder than the Holocene temperatures. The denitrification within the lake evident by enriched δ15NOM (>10‰) during Antarctic LGM might have resulted from oxygen-limitation within the lake environment caused by insulated lake surface. The gradual increases in δ13COM, C/N and sand content starting at ~11 ky BP and attaining high values (~?11‰, ~10 and ~80% respectively) at ~6 ky BP together suggest a subtle change in the balance of sources of organic matter between algal and macrophyte/bryophyte nearly 8–9 ky later to the beginning of the deglaciation. Thus the seasonal opening-up of the Sandy Lake similar to the modern pattern started with the establishment of the optimum temperature conditions (i.e., 0 °C anomaly) in the Antarctic, prior to which the lake environment might have remained mostly insulated or closed.  相似文献   

8.
Lake sediments contain archives of past environmental conditions in and around water bodies and stable isotope analyses (δ13C and δ15N) of sediment cores have been used to infer past environmental changes in aquatic ecosystems. In this study, we analyzed organic matter (OM), carbon (C), nitrogen (N), phosphorus (P), and δ13C and δ15N values in sediment cores from three subtropical lakes that span a broad range of trophic state. Our principal objectives were to: (1) evaluate whether nutrient concentrations and stable isotope values in surface deposits reflect modern trophic state conditions in the lakes, and (2) assess whether stratigraphic changes in the measured variables yield information about shifts in trophic status through time, or alternatively, diagenetic changes in sediment OM. Three Florida (USA) lakes of very different trophic status were selected for this study. Results showed that both δ13C and δ15N values in surface sediments of the oligo-mesotrophic lake were relatively low compared to values in surface sediments of the other lakes, and were progressively lower with depth in the sediment core. Sediments of the eutrophic lake had δ13C values that declined upcore, whereas δ15N values increased toward the sediment surface. The eutrophic lake displayed δ13C values intermediate between those in the oligo-mesotrophic and hypereutrophic lakes. Sediments of the hypereutrophic lake had relatively higher δ13C and δ15N values. In general, we found greater δ13C and δ15N values with increasing lake trophic state.  相似文献   

9.
Stable isotope measures in organic matter are frequently used as indicators of past climate change. Although such analyses can provide valuable information, there is considerable uncertainty associated with studies of organic-rich sediments, especially those from Arctic lakes and bogs. We studied stable isotopes of carbon and nitrogen, and magnetic properties in a sediment core from a small alkaline lake with a high sedimentation rate, Lake Nattmålsvatn, Norway. There is good correspondence among the different sediment variables during the late glacial, and they seemingly reflect major climate variations such as the Allerød Interstade and the Younger Dryas, as well as the transition into the current interglacial. During the early Holocene, however, these relationships are more complex and δ13C and δ15N values do not stabilize until ~7,500 cal year BP. A significant excursion in all variables occurs between 6,850 and 6,500 cal year BP and is interpreted to represent climate deterioration. Holocene δ13C values vary little and indicate that isotopically-depleted dissolved inorganic carbon (DIC) in the lake, possibly influenced by methanotrophy and high pCO2, dominated the lake’s carbon cycle. Holocene δ15N is similarly muted, likely due to the availability of abundant dissolved nitrogen. Bulk organic matter is probably dominated by phytoplankton remains produced beneath the ice cover in late spring and during ice breakup when isotopically-depleted DIC, pCO2 and ammonium availability were maximal. Thus, use of δ13C and δ15N as indicators of Holocene paleoclimate and paleoproductivity variation can be challenging in a lake such as Nattmålsvatn, where ice cover isolates the basin for large parts of the year, allowing dissolved respiratory gases to accumulate in the water column. In contrast, magnetic variables appear to better track climate variations. In particular, runoff-driven influx of minerogenic sediments shows high variability that can be attributed to regional changes in Holocene winter precipitation. The most striking shifts occur between 4,000 and 2,300 cal year BP.  相似文献   

10.
We used elemental carbon, nitrogen, phosphorus and hydrogen ratios (C/N, N/P and H/C) with total organic carbon (TOC) and total phosphorus (TP) as well as stable carbon and nitrogen isotopes (δ13C and δ15N) to investigate the source and depositional conditions of organic matter in sediments from Zeekoevlei, the largest freshwater lake in South Africa. Typical C/N (10–12), H/C ratios (≥1.7) and δ13Corganic values (−22 to −19‰) together with the increase in TOC concentration indicate elevated primary productivity in lower middle (18–22 cm) and top (0–8 cm) sections of the sediment cores. Seepage of nutrients from a nearby waste water treatment plant, rapid urbanization and heavily fertilized farming in the catchments are responsible for the increased productivity. Consistent with this, measured δ15Norganic values (∼11‰) indicate increased raw sewage input towards the top-section of the core. Although cyanobacterial blooms are evident from the low δ15N values (∼3‰) in mid-section of the core, they did not outnumber the phytoplankton population. Low N/P ratio (∼0) and high TP (100–2,200 mg l−1) support cyanobacterial growth under N limited condition, and insignificant input of macrophytes towards the organic matter pool. Dredging in 1983, caused sub-aerial exposure of the suspended and surface sediments, and affected organic matter preservation in the upper mid-section (12–14 cm) of the core.  相似文献   

11.
Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between ?34.7 and ?30.5 ‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2–3 ‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (?30.4 to ?28.2 ‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.  相似文献   

12.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

13.
We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δ18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δ18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δ18O (less than ?12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δ18O values, to ?11.3 and ?11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from ?11.5 to ?10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δ18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δ18O, reaching the most negative value (?12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP.  相似文献   

14.
The mass transport of nutrients by migratory animals can markedly alter the biogeochemistry and ecology of recipient ecosystems, particularly in nutrient-poor regions such as the Arctic. However, the role of biovectors in the global cycling of nutrients is often overlooked. Here we investigate nitrogen dynamics in two seabird-affected ponds in the Canadian High Arctic. The ponds lie at the base of a large seabird colony and have been greatly enriched in nutrients due to the input of guano and other wastes. Using sediment cores that span the last ~200 years, we measured stable isotopes of nitrogen (δ15N) in bulk sediments as well from the subfossil remains of chironomid (Diptera) head capsules and Daphnia ephippia. The bulk-sediment samples from our seabird-affected ponds had elevated δ15N values relative to seabird-free sites elsewhere in the Arctic. In general, the chironomid δ15N profiles roughly paralleled those of bulk sediments in both study ponds, while the Daphnia profile remained relatively stable in contrast to the considerable variation recorded in the bulk sediments and chironomids. Interestingly, no apparent pattern emerged among δ15N values recorded in the bulk sediments, chironomids, and Daphnia between the two study ponds. The stability recorded in the δ15N profiles from bulk sediments relative to the more variable invertebrate profiles point towards the complexity of nitrogen uptake by chironomids and Daphnia at these sites. These data suggest that the bulk sediments are integrating the different fractions of the overall δ15N pool and thus may be most appropriate for reconstructing overall trends in lake trophic status.  相似文献   

15.
Several geological and geochemical parameters were determined in the sediments of the 5th (5 J) and 6th (6 J) Triglav Lakes, Julian Alps (NW Slovenia), in order to study the impact of natural catchment characteristics and anthropogenic activity. Fish were introduced into both lakes in 1991 and a mountain hut lies on the shore of 5 J. Sedimentary grain size (GS) was distinctly coarser in 5 J than 6 J, with arithmetic means ranging between 46 and 60 and 23–36 μm, respectively. In contrast, the mineralogical composition of the two sediments was similar. Calcite predominated strongly, comprising more than 77 % of total minerals, while dolomite and quartz were rare. Organic carbon (OC) and total nitrogen (TN) concentrations were highest in surficial sediments, with levels of 14.4 and 1.8 %, and 19.3 and 2.4 % observed in 5 J and 6 J, respectively. C/N ratios (atomic) were lowest in the same surface sediments, with the two lakes characterized by similar values (9.6 vs. 9.4, respectively), suggesting a predominance of autochthonous organic matter (OM) in both lakes. Contemporary δ13C values were lower in 5 J (?21.0 ‰) than 6 J (?18.5 ‰) sediments. Considerable changes in these four parameters were observed in recently deposited material, reflecting a shift in the trophic status of both lakes that was likely induced by the introduction of fish. In addition, the smaller and shallower 6 J seemed to respond to changes faster than the larger and deeper 5 J, indicating the higher sensitivity of the former. δ15N values in surface sediments of 5 J and 6 J were ?2.9 and ?4.4 ‰, respectively, with levels increasing gradually with depth to approximately +1.0 ‰ in deeper sediments. The observed changes could most likely be attributed to the atmospheric deposition of reactive nitrogen. The mountain hut has seemingly not had a significant enough impact on the lakes to be recorded in their sediments.  相似文献   

16.
The stable carbon isotope composition, expressed as δ13C values, of chitinous resting stages of planktivorous invertebrates can provide information on past changes in carbon cycling in lakes. For example, the δ13C values of cladoceran ephippia and bryozoan statoblasts have been used to estimate the past contribution of methane-derived carbon to lake food webs and variations in the δ13C value of planktonic algae. Limited information, however, is available concerning seasonal variations in δ13C values of these organisms and their resting stages. We measured the seasonal variation in δ13C values of Daphnia (Branchiopoda: Cladocera: Daphniidae) and their floating ephippia over a 2-year period in small, dimictic Lake Gerzensee, Switzerland. Floating ephippia of Ceriodaphnia (Branchiopoda: Cladocera: Daphniidae) and statoblasts of Plumatella (Phylactolaemata: Plumatellida: Plumatellidae) were analysed during parts of this period. Furthermore, δ13C values of remains from all three organism groups were analysed in a 62-cm-long sediment core. Throughout the year, Daphnia δ13C values tracked the δ13C values of particulate organic matter (POM), but were more negative than POM, indicating that Daphnia also utilize a relatively 13C-depleted carbon source. Daphnia ephippia δ13C values did not show any pronounced seasonal variation, suggesting that they are produced batch-wise in autumn and/or spring and float for several months. In contrast, δ13C values of Ceriodaphnia ephippia and Plumatella statoblasts followed variations in δ13CPOM values, Ceriodaphnia values being the most negative of the resting stages. Average cladoceran ephippia δ13C values in the flotsam agreed well with ephippia values from Gerzensee surface sediments. In contrast, average Plumatella statoblast δ13C values from the flotsam were 4‰ more negative than in the surface sediments. In the sediment core, δ13C values of the two cladocerans remained low (mean ?39.0 and ?41.9‰) throughout the record. In contrast, Plumatella had distinctly less negative δ13C values (mean ?32.0‰). Our results indicate that in Gerzensee, Daphnia and Ceriodaphnia strongly relied on a 13C-depleted food source throughout the past 150 years, most likely methane-oxidising bacteria, whereas this food source was not a major contribution to the diet of bryozoans.  相似文献   

17.
Geochemical properties of sediments deposited in Lake Middle Marviken over the last 185 years record the impacts of a succession of environmental changes that have occurred in the watershed. Clear-cutting of forests for wood and charcoal and extensive water harnessing to support the local iron mills from 1897 to 1957 is recorded by low C/N ratios, high black carbon, and low TOC and Ntotal accumulation rates. Larger δ13C and δ15N values in sediments deposited during this period imply higher productivity. Fluctuations in Ntotal and Ptotal accumulation rates show that the lake chemistry has varied between P or N-depleted systems that affected the δ15N values. Organic matter in the sediments is predominantly immature terrestrial material. Furthermore, hydrocarbon CPI, TAR, and Paq values conform with the observed geochemical trends, variations in organic matter sources, and changes in the watershed. Accumulation rates of Cd, Pb, Zn, and S remained mostly unchanged throughout the period of mining, but an increase from 1957 to 1980 is most likely associated with air-borne industrial and fossil fuel emissions from regional urbanization. In situ microbial processes, such as iron and manganese reduction, also appear to be important in carbon cycling and in affecting the sediment and water chemistry of this lake.  相似文献   

18.
We studied the potential for using stable carbon and nitrogen isotope ratios in sediment profiles to trace external nutrient sources and eutrophication at four coastal sites in the Baltic Sea. The sites are characterized by various present and past activities in their catchments, including residential development, sugar processing, agriculture and fish farming. Radiometrically dated sediment cores were analysed for nutrient isotope ratios, organic carbon and total nitrogen. Background information was collected from historical sources, literature and water monitoring data. Despite the multiple organic enrichment sources, it was possible to identify individual sources and processes in the sediment profiles using stable isotope analysis of bulk sediment. The largest changes in δ15N values were seen at sites receiving urban wastewaters. The site that received effluents from a sugar cane (C4-plant) refinery in the past showed a clear effect on δ13C values compared to the site that received wastewater from a sugar beet (C3-plant) factory. Fish farming produced detectable, albeit minor changes in the sediment profile. Slightly lower δ13C values reflected the influence of fish feed and fish metabolism, and higher δ15N values likely indicated the influence of increased sediment denitrification. The land-sea connection via river discharge was observable in the overall δ13C levels of the sediment cores. Our results suggest that temporal changes in sources of organic matter enrichment can be detected in well-dated coastal sediment cores using nutrient stable isotope analyses, even at sites subjected to multiple impacts. There is not, however, a simple relationship between sediment stable isotope profiles and the eutrophication history of our study sites.  相似文献   

19.
Isotopic records of aquatic cellulose are becoming increasingly important for palaeohydrological reconstructions, but widespread application of this climate proxy is hampered by minerogenic contamination that affects oxygen isotope measures in cellulose. Few records of isotopes in aquatic cellulose are available from palaeoclimate archives in the Southern Hemisphere. In this study, we used a new bulk cellulose extraction method and determined the oxygen (δ18O) and carbon (δ13C) isotope values in cellulose from a Holocene lake sediment core segment (7.2–1.1 cal ka BP) from Lake Pupuke, Auckland, New Zealand. Isotope values from modern, potential sources of sedimentary cellulose revealed the aquatic origin of the cellulose extracted from the core, and hence enabled inference of past lake water δ18O values from the δ18O of measured cellulose in the core. A shift to a more positive water balance in the lake was identified around 2.8 cal ka BP by a decrease in inferred lake water δ18O values. At that time, greater epilimnetic primary productivity is indicated by the higher δ13C values of sedimentary cellulose. Greater divergence between the δ13C values of cellulose and bulk organic matter suggests stronger stratification of the lake, likely caused by greater freshwater input. We discuss a possible link to a solar minimum that occurred at that time.  相似文献   

20.
Reservoir sediments are used cautiously in paleolimnological studies because of dating uncertainties, possible sediment disturbances and even concerns that indicators of trophic status may behave differently in reservoirs as opposed to natural lakes. We measured loss on ignition (LOI), carbon to nitrogen ratio (C:N), diatom abundance, total nitrogen (TN), total phosphorus (TP), TN:TP ratio, and carbon and nitrogen isotopes (δ13C and δ15N) in an 83-cm sediment core to track recent trophic status changes in Beaver Reservoir, Northwest Arkansas, USA. Measurements showed that LOI, TN, TP and diatom abundance increased significantly from the bottom to the top of the core (p < 0.001). The C:N ratio and δ13C indicated a predominantly algal source for organic matter in the sediments. Increases in TN and TP were positively correlated with human population growth (p < 0.01) and the TN:TP ratio recorded a shift from phosphorus to nitrogen limitation around 1990. This shift may have encouraged cyanobacterial growth that caused episodes of taste and odor problems in the reservoir. This study suggests that despite concerns about sediment dating and disturbance, reservoir sediments can provide valuable information on past water quality changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号