首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abyssal circulation in the Philippine Sea(PS)is investigated,with outputs from the Simple Ocean Data Assimilation version 2.2.4(SODA224).The deep-water currents in SODA224 are carefully evaluated,with sparse in situ observations in the North Pacific Ocean.In the upper deep layer(20003000 m)of the PS,a strong westward current,which originates from the Northeast Pacific Basin and enters the PS through the Yap-Mariana Junction,exists along 1114 N.This strong westward current bifurcates into two western boundary currents off the Philippines.The northward-flowing current flows out of the PS around 2021 N,whereas the southward-flowing current transports deep water from the northern hemisphere to the southern hemisphere.In the lower deep layer(30004500 m),the inflow water first flows northward to the east of the Western Mariana Basin and then turns westward at approximately 18 N.The inflow water mainly enters the Philippine Basin(PB),with a small part turning southward to constitute a weak cyclonic circulation.The water entering the PB mainly merges into a strong southward western boundary current in the south-ern PB.In the bottom layer(below 4500 m),both the northeast and northwest PB show single cyclonic gyres,whereas the south PB shows a single anticyclonic gyre.Moreover,comparisons with the observations indicate the possible existence of a cyclonic sense of circulation over the Philippine Trench.The current study provides the implications for future observations,which are needed to fur-ther investigate the temporospatial variations of the abyssal circulation in the PS on multiple scales.  相似文献   

2.
The three dimensional structure of the western boundary current east of the Vietnam coast was determined from measurements by Argo profiling floats which deployed near the east of the Vietnam Coast in October 2007. The trajectories of the Argo floats provided robust evidence that there does exist southward flowing current along the Vietnam coast. The southward current begins at about 15°N, 111°E, flowing along the 1 000 m isobath and extending to 5°N south. The estimated surface and parking depth velocities obtained from the floats suggest that this southward current can extend to 1 000 m depth. The mean surface velocity of the western boundary current is about 49 cm/s, with the maximum speed exceeding 100 cm/s occurring at 11.6°N, 109.5°E in the direction of 245°. The mean parking depth (1 000 m) velocity is 12–16 cm/s with the maximum speed of 36 cm/s occurring at 12.1°N, 109.7°E in the direction of 239°.  相似文献   

3.
Using merged sea level anomaly and absolute geostrophic velocity products from satellite altimetry and Argos drifter data,we analyzed the reversal process of the South China Sea(SCS) western boundary current(SCSwbc) from a summer to winter pattern in 2011 and important oceanic phenomena during this process.Results show that the outbreak time of the northeast monsoon over the southern SCS lagged that over the northern SCS by about 1 month.During the SCS monsoon reversal period,the SCSwbc reversed rapidly into the winter pattern at the Guangdong continental slope in late September.Subsequently,the southward Vietnam coastal boundary current strengthened.However,the northward Natuna Current maintained a summer state until mid-October.Thus,the balance between the southward and northward currents was lost when they met,their junction moved gradually southward.However,a loop current formed southeast of Vietnam because the main stream of the Vietnam Offshore Current(VOC) remained near its original latitude.Meanwhile,the VOC and associated dipole circulation system strengthened.After midOctober,the northward Natuna Current began to weaken,the loop current finally shed,becoming a cool ring.The VOC and its associated dipole sub-basin circulation system also weakened gradually until it disappeared.  相似文献   

4.
A three-dimensional baroclinic shelf sea model was employed to simulate the seasonal characteristics of the South China Sea (SCS) upper circulation. The results showed that: in summer, an anticyclonic eddy, after its formation between the Bashi Channel and Dongsha Islands in the northeastern SCS, moves southwestward until it disperses slowly. There exists a northward western boundary current along the east shore of the Indo-China Peninsula in the western SCS and an anticyclonic gyre in the southern SCS. But at the end of summer and beginning of autumn, a weak local cyclonic eddy forms in the Nansha Trough, then grows slowly and moves westward till it becomes a cyclonic gyre in the southern SCS in autumn. At the beginning of winter, there exists a cyclonic gyre in the northern and southern SCS, and there is a southward western boundary current along the east shore of the Indo-China Peninsula. But at the end of winter, an anticyclonic eddy grows and moves toward the western boundary after forming in the Nansha Trough. The eddy‘s movement induces a new opposite sign eddy on its eastern side, while the strength of the southward western boundary current gets weakened. This phenomenon continues till spring and causes eddies in the southern SCS.  相似文献   

5.
The eastern edge of the western Pacific warm pool (WPWP) in the upper layer (shallower than 50m) exhibits significant zonal displacements on interannual scale. Employing an intermediate ocean model, the dynamic mechanism for the interannual zonal displacement of the WPWP eastern edge in the upper layer is investigated by diagnosing the dynamic impacts of zonal current anomalies induced by wind, waves (Kelvin and Rossby waves), and their boundary reflections. The interannual zonal displacements of the WPWP eastern edge in the upper layer and the zonal current anomaly in the equatorial Pacific west of 110°W for more than 30 years can be well simulated. The modeling results show that zonal current anomalies in the central and eastern equatorial Pacific are the dominant dynamic mechanism for the zonal displacements of the eastern edge of the upper WPWP warm water. Composite analyses suggest that the zonal current anomalies induced by waves dominate the zonal displacement of the WPWP eastern edge, whereas the role played by zonal wind-driven current anomalies is very small. A sensitivity test proves that the zonal current anomalies associated with reflected waves on the western and eastern Pacific boundaries can act as a restoring force that results in the interannual reciprocating zonal motion of the WPWP eastern edge.  相似文献   

6.
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.  相似文献   

7.
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.  相似文献   

8.
Pathways of mesoscale variability in the South China Sea   总被引:5,自引:0,他引:5  
The propagation of oceanic mesoscale signals in the South China Sea (SCS) is mapped from satellite altimetric observations and an eddy-resolving global ocean model by using the maximum cross-correlation (MCC) method. Significant mesoscale signals propagate along two major bands of high variability. The northern band is located west of the Luzon Strait, characterized by southwestward eddy propagation. Although eddies are the most active in winter, their southwestward migrations, steered by bathymetry, occur throughout the year. Advection by the mean flow plays a secondary role in modulating the propagating speed. The southern eddy band lies in the southwest part of the SCS deep basin and is oriented in an approximately meridional direction. Mesoscale variability propagates southward along the band in autumn. This southward eddy pathway could not be explained by mean flow advection and is likely related to eddy detachments from the western boundary current due to nonlinear effects. Our mapping of eddy propagation velocities provides important information for further understanding eddy dynamics in the SCS.  相似文献   

9.
以插值切割法为例,对理想模型在地表的重力异常数据进行不同尺度的扩边,并对扩边后的数据进行不同深度层源的切割分离。基于分离后的结果,从不同扩边尺度、不同深度层源的重力异常差异、扩边尺度与重力场源分离误差的角度研究扩边尺度对重力异常分层分离处理的影响。结果表明: 1) 理想模型数据区域的边界效应与扩边尺度、切割分离深度、异常的规模和幅度及空间位置等因素相关; 2) 扩边尺度的选择应综合考虑分析资料所需满足的精度和数据计算效率,扩边尺度不宜过大,扩边尺度与重力异常分层分离最大切割深度至少应满足2∶1的要求才能明显改善边界效应,对含有较大重力异常边界进行切割分离时,应在2倍扩边尺度的基础上再进一步扩边; 3) 边界效应的空间展布不是由数据区域边界向中心区域均匀分布,而与异常体的规模和空间位置有关。  相似文献   

10.
A three-dimensional baroclinic shelf sea model‘ s numerical simulation of the South China Sea (SCS) middle and deep layer circulation structure showed that: 1. In the SCS middle and deep layer, a seulhward boundary current exists along the east shore of the Indo-China Peninsula all year long.A cyclonic eddy (gyre) is formed by the current in the above sea areas except in the middle layer in spring, when an anticyclonic eddy exists on the eastern side of the current. In the deep layer, a larges-cale anticyclonic eddy often exists in the sea areas between the Zhongsha Islands and west shore of southern Luzon Island. 2. In the middle layer in snmmer and autumn, and in the deep layer in autumn and winter, there is an anticyclonic eddy (gyre) in the northeastern SCS, while in the middle layer in winter and spring, and in the deep layer in spring and snmmer, there is a cyclonic one. 3. In the middle layer,there is a weak northeastward current in the Nansha Trough in spring and snmmer, while in autumn and winter it evolves inl~ an anticyclonic eddy ( gyre), which then spreads westward l~ the whole western Nansha Islands sea areas.  相似文献   

11.
The inverse method developed by Wunsch (1978) is widely used to determine circulation in the oceans (Fu, 1980; Wunsch, Hu and Grant, 1983; Joyce and Wunsch, 1986; Rintoul, 1988). However, for inversion manipulation, measurements down to the bottom are required, and so is a certain solid boundary. In the present paper an equation of potential condition satisfied by the velocity field at the reference level is added to Wunsch's underdetermined matrix equation in order to make the method adequate for the case where measurements do not touch bottom and when a solid boundary does not exist. The western boundary current in the Pacific is calculated and examined in terms of the velocity field and transport with CTD data gathered by theR/V Science I in October 1988. Contribution No. 1748 from the Institute of Oceanology, Academia Sinica  相似文献   

12.
Floc breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floc breakup and size distribution in the water column. In a neutrally stratified estuary, the floc size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floc sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floc size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floc size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floc breakup can be consistently approximated by a linear regression between the maximal floc size and flux Richardson number.  相似文献   

13.
Floe breakup dynamics are studied by a sediment transport numerical model in an idealized tidal estuary that has a constant water depth and rapid flocculation of cohesive sediments. The focus is placed on the effects of boundary layer stratification induced by a bottom nepheloid layer on floe breakup and size distribution in the water column. In a neutrally stratified estuary, the floe size distribution follows a parabolic function with maximum values at the surface and bottom. The sediment-induced stratification in the bottom boundary layer increases the median floe sizes. Furthermore, sediment-voided convection caused by the settling lutocline generates significant turbulent kinetic energy dissipation and reduces floe size at the depth where the convective mixing happens. Below that depth, a weak local maxima in the floe size is predicted due to presence of the lutocline. The effect of sediment-stratified bottom boundary layer on the floe breakup can be consistently approximated by a linear regression between the maximal floe size and flux Richardson number.  相似文献   

14.
The paper presents a numerical two-dimensional model (with a realistic sea basin and wind fields as exter nal forcing) to simulate the basic features of the wintertime circulation in the Bohai and Huanghai (Yellow) Seas (BHS) and to show how the circulation can be driven by wind. The main results can be summarized as follows (1) The basic features of the BHS wintertime circulation can be depicted by the wind-driven barotropi'c motion. (2) The traditionally named Huanghai Sea Warm Current (HSWC) is actually generated by the north wind field, at least in winter. (3) The southward coastal current off the Korean west coast plays a more significant role in the southern Huanghai Sea wintertime circulation than traditionally believed. (4) Though the coastal landform and bottom topography play important roles in the wintertime BHS circulation pattern, the wind is a primary forcing.  相似文献   

15.
Data taken in two large scale ocean observations in China in summer 1959 and 1982 were used to analyze the residual current off the Changjiang (Yangtze) River mouth. The currents at surface off the mouth in July 1959 and 1982 flow northeastward and eastward due to the river discharge, the current speed was larger in 1982 than in 1959. All the bottom currents flow landward due to baroclinic effect. The surface current was controlled by the river runoff and the Taiwan Warm Current (TWC). A return current at surface off the mouth was observed in September 1959. In general, the bottom currents were controlled by the TWC in most study area in addition to the runoff near the mouth. Although driven by 3-D model with the monthly averaged forces (river discharge, wind stress, baroclinic effect, open boundary water volume flux and tidal mixing) in August, the simulated circulations were basically consistent with the observed ones with episodic time manner.  相似文献   

16.
A tetrad mechanism for exciting long waves, for example edge waves, is described based on nonlinear resonant wave-wave interactions. In this mechanism, resonant interactions pass energy to an edge wave,from the three participating gravity waves. The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms, such as triad interactions. Moreover, the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two- to three- orders of magnitude greater than bottom friction.  相似文献   

17.
长江的发育演化尤其是东西贯通的时限问题,是百余年来地学界的焦点问题,金沙江水系的演化重组是长江演化中的关键一环。基于填充海拔的模型模拟以及物源示踪的梳理结果,讨论了金沙江在夷平面上南流汇入红河的可能性。结果显示当海拔填充至2 000~2 200 m时,金沙江水系格局发生重大变化,表现为金沙江在金江街一改东流之势,沿宾川盆地汇入古红河;古雅砻江在攀枝花附近转而向西,沿金沙江河谷经宾川盆地流入古红河,形成古红河的一级支流。推断哀牢山-红河断裂带、程海-宾川断裂带的活动及山体隆升特别是鸡足山的隆升可能阻断了上述南流泄口,切断了金沙江与红河的联系,从而形成今日江水东流的水系格局,这为古金沙江南流路径的研究提供了新的思路和方向。  相似文献   

18.
论本溪群     
本溪群的原始定义属岩石地层单位,70年来的研究表明;其界线层型及岩百地层单位性质没有改变过;本溪群可以延展到东北南部及华北,并具有二分、三分的概分性。华北本溪群曾被划分为湖田组(铁铝岩组)和畔沟组,业已证实二分的可行性;张守信(1988,1992)欲以太原组(新涵义)替代本溪群(剔除下部铁铝岩组合)是不可行的。  相似文献   

19.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

20.
讨论了两个问题:(1)三维圆孔问题的力学模型。论证了常用的平面弹性力学圆孔问题的钻孔应变公式并不能满足三维弹性力学平衡方程。为此重新推导出三维空孔问题的解,进而可得到有底空孔、有底耦合封固、有底顶头加力等几种边界条件的钻孔应变解。(2)在边界条件上,实际地球潮汐形变应力与三维圆孔问题力学模型的应力有差异。论证了在目前钻孔应变测量的精度情况下,边界条件的这一差异不影响三维圆孔问题力学模型在应变固体潮中的应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号