首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 707 毫秒
1.
文中在GPS精密单点定位(PPP)理论与方法的基础上,给出了多系统组合的精密单点定位技术观测模型,采用GPS、GLONASS、GALILEO、BDS 四大卫星导航定位系统的实测数据,研究并分析了四系统组合PPP的定位性能。结果表明,多系统PPP精度较单系统有很大提高,GPS+GLONASS+GALILEO+BDS四系统组合动态PPP在三个方向平均偏差约为0.7 cm、0.6 cm和1.7 cm,收敛时间为15~20 min左右,并且多系统PPP在截止高度角增大时,依然有充足的卫星数量,当截止高度角达到30°时,依然能达到cm级定位精度,对机载动态数据进行PPP解算结果显示,四系统组合解算的结果与利用GrafMov的解算结果符合得最好,优于其他双系统和单系统PPP的精度。   相似文献   

2.
针对单频精密单点定位(PPP)两种常用的定位模型:非组合模型和附加电离层约束模型,同时综合考虑电离层约束模型三种不同约束策略(常数约束,时空约束,逐步松弛),对比分析了其使用GPS单系统及GPS+BDS双系统观测值的定位收敛时间,定位精度及其优缺点. 实验结果表明:使用GPS单系统,附加不同电离层约束对单频PPP收敛时间缩短效果显著,其中逐步松弛约束平均收敛时间最短,其平均收敛时间为32.36 min,四种定位模型收敛后的定位精度基本相当. 加入北斗卫星导航系统(BDS)后,四种定位模型的收敛时间均有不同程度的缩短,其中时空约束模型缩短最为显著,收敛时间缩短为单系统的59.22%. 在定位精度方面,加入BDS观测值后水平方向定位精度可提升0.5~1.3 cm,垂直方向定位精度略有下降.   相似文献   

3.
随着北斗卫星导航系统(BDS)的全球组网成功,基于BDS的应用研究正在如火如荼的进行中,尤其是包括BDS在内的多频多模融合定位正成为研究的重点. 利用MGEX (Multi-GNSS Experiment)多个测站的BDS、GPS、GLONASS、Galileo观测数据,基于RTKLIB开源代码,在Visual Studio 2017平台上进行了BDS/GPS、BDS/GLONASS、BDS/Galileo三种组合系统的精密单点定位(PPP)实验,从静态PPP、动态PPP、可见卫星数、精度衰减因子(DOP)等方面对比分析了三种组合系统的定位性能. 实验结果表明:BDS/GPS组合系统的可见卫星数最多,各DOP值最小,静态PPP收敛后三个方向的精度优于6 cm. 不论是静态PPP还是动态PPP,其定位性能都最好;BDS/GLONASS、BDS/Galileo组合系统动态PPP的定位抖动较大,可见卫星数都要小于BDS/GPS组合系统,收敛时间较长,两者的动态PPP定位性能也差于BDS/GPS组合系统.   相似文献   

4.
使用10个MGEX测站的数据对4种解算模式GPS、GPS/BDS、GPS/Galileo及GPS/BDS/Galileo在定位可用性、定位精度和定位稳定性及收敛时间3个方面的PPP性能进行了对比分析。实验结果表明:GPS/BDS和GPS/Galileo双系统组合PPP在各方面的性能相当。相比GPS单系统PPP,双系统PPP能增加可用卫星数,改善卫星空间几何构型,定位精度提升20%~35%,定位稳定性提高25%~40%,收敛时间缩短35%~45%。BDS在较高截止高度角下的可用性、天向定位精度、水平方向定位稳定性、天向收敛速度方面的贡献略优于Galileo。GPS/BDS/Galileo三系统组合的PPP性能进一步提升。  相似文献   

5.
对在线精密单点定位技术进行测试,分析了它的动态、静态定位精度和收敛速度,以及多系统卫星观测对这两者的影响。结果表明,在线PPP静态定位单天解的精度在水平方向可达mm级,高程方向可达mm~cm级,可在10~20 min内收敛;静态数据模拟动态解算的精度水平方向为2~3 cm,高程方向为4~5 cm,而实际动态数据的解算精度略低于此精度。GPS/GLONASS组合系统能加快定位收敛速度,尤其在GPS系统观测条件较差的情况下,能够同时显著提高收敛速度和定位精度。  相似文献   

6.
非组合与组合PPP模型比较及定位性能分析   总被引:1,自引:0,他引:1  
使用2011-10-10全球随纬度均匀分布的10个IGS测站的观测数据,分别采用非组合、组合PPP(precise point positioning)模型进行定位解算,详细对比分析了两种PPP模型的静态和动态定位精度和收敛速度,以及ZPD估计精度。实验结果表明,两种PPP模型均可实现水平方向mm~cm级,高程1~3cm的静态定位精度;水平方向1~3cm,高程方向4cm左右的模拟动态定位精度,非组合L1和L2载波相位观测值残差只有传统模型中组合相位观测值残差的1/3~1/5,内符合精度更高。对于30s采样率的观测数据,组合PPP静态定位平均收敛时间为23min,动态为38min;非组合PPP静态定位平均收敛时间为29min,动态为71min,后者的收敛时间均普遍长于前者。在ZPD估计方面,两种模型的估计精度相当,均可达6mm左右。  相似文献   

7.
PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较   总被引:9,自引:7,他引:9  
张小红  胡家欢  任晓东 《测绘学报》1957,49(9):1084-1100
首先简要回顾了精密单点定位(PPP)技术在最近几年的发展现状,重点总结了高采样率钟差实时快速估计、多系统组合PPP模糊度固定、多频GNSS PPP模型及其模糊度固定、PPP快速初始化、PPP-RTK等若干热点方向的最新研究进展。在此基础上,利用目前四大卫星导航系统(GPS、GLONASS、Galileo、北斗)最新的实际观测数据,全面比较分析了各系统及多系统组合PPP定位性能,重点给出了北斗二号+北斗三号PPP浮点解和固定解的定位精度、收敛时间和首次固定时间。结果表明:我国北斗导航卫星系统已经可以实现与其他导航卫星系统基本相当的PPP定位性能。北斗二号+北斗三号组合PPP的收敛时间/首次固定时间20~30 min;静态解的东、北、天方向定位精度在毫米到厘米级;动态解水平方向约5 cm,高程方向约7 cm;多系统组合可显著提高PPP定位精度、收敛时间和首次固定时间:固定解定位精度比浮点解在东、北、天方向分别提升了14.8%、12.0%和12.8%;相比单GPS,多系统组合PPP浮点解的收敛时间和固定解首次固定时间分别缩短了36.5%和40.4%。  相似文献   

8.
数据时效性对多系统实时PPP的影响分析   总被引:1,自引:1,他引:0  
针对服务器端和客户端的数据时效性问题,该文系统地分析了服务器端状态空间表示(SSR)改正数更新时间间隔和客户端观测值数据及SSR改正数中断对实时精密单点定位(PPP)的影响。实验结果表明:服务器端播发SSR改正数的时间间隔在30s以内,GPS+GLONASS+BDS、GPS+GLONASS和GPS实时PPP定位可获得厘米级定位精度,同时SSR改正数的播发时间间隔对GPS+GLONASS+BDS、GPS+GLONASS和GPS实时PPP定位影响无明显差异;客户端SSR改正数中断时长在150s以内,GPS+GLONASS+BDS、GPS+GLONASS和GPS实时PPP定位可获得厘米级定位精度,改正数中断360s可获得亚米级定位精度,单系统较多系统受SSR改正数中断的影响较大;观测值连续中断16min时,实时PPP需要重新收敛。  相似文献   

9.
BDS/GPS精密单点定位收敛时间与定位精度的比较   总被引:5,自引:1,他引:4  
张小红  左翔  李盼  潘宇明 《测绘学报》2015,44(3):250-256
采用武汉大学卫星导航定位技术研究中心发布的北斗精密卫星轨道和钟差,在TriP 2.0软件的基础上实现了BDS PPP定位算法,并利用大量实测数据进行了BDS/GPS静态PPP和动态PPP浮点解试验。结果表明,BDS静态PPP的收敛时间约为80min,动态PPP的收敛时间为100min;对于3h的观测数据,静态PPP收敛后定位精度优于5cm,动态PPP收敛后水平方向优于8cm,高程方向约12cm;与GPS PPP类似,东分量上定位精度较北分量稍差。当前由于BDS的全球跟踪站有限,精密轨道和钟差精度不如GPS,因此BDS PPP的收敛时间较GPS长,但收敛后可实现厘米至分米级的绝对定位。  相似文献   

10.
周锋  徐天河 《测绘学报》2021,50(1):61-70
在精细考虑伪距和载波相位硬件偏差时变特性的基础上,导出了更为严谨的非差非组合观测方程,并给出了非组合模式下两类GNSS偏差的数学表达形式。基于此,本文详细研究了3种常用的三频精密单点定位(PPP),即无电离层两两组合IF1213、单个无电离层组合IF123与非组合UC123函数模型的独立参数化方法,系统分析了3种PPP模型的相互关系以及GPS/BDS/Galileo三频静、动态PPP定位性能。结果表明,静态PPP收敛后定位精度水平方向优于1.0 cm,高程优于1.5 cm;动态PPP水平方向优于2.0 cm,高程优于5.0 cm;三频PPP的定位性能与双频PPP基本相当。  相似文献   

11.
为进一步改善精密单点定位(PPP)探测大气可降水量(PWV)的性能,本文提出采用GPS/BDS/GLONASS/Galileo组合PPP进行PWV反演的方法,并利用国内3个MGEX(multi-GNSS experiment)观测站的实测数据,对GPS/BDS/GLONASS/Galileo组合PPP在大气水汽探测方面的性能进行了评估。试验结果表明:相较于GPS PPP、GPS/BDS组合PPP和GPS/GLONASS组合PPP,GPS/BDS/GLONASS/Galileo组合PPP估计天顶对流层延迟(ZTD)的初始化时间分别缩短了33%、26%、20%,且能获得更高精度的ZTD估值和PWV信息,在大气水汽探测方面的性能更优。  相似文献   

12.
精密单点定位(precise point positioning,PPP)已经广泛应用于许多领域,如测绘、交通、导航、地震监测等。近些年来,随着卫星数量的增多,多系统组合呈现越来越明显的趋势。利用全球MGEX(Multi-GNSS Experiment)网数据研究了BDS(BeiDou navigation satellite system)/GPS(global positioning system)组合精密单点定位技术,并与BDS单系统和GPS单系统进行了对比。结果表明,在静态定位中,BDS PPP在E、N、U方向的均方根误差分别为4.35 cm、3.01 cm、6.40 cm;GPS PPP在E、N、U方向的均方根误差分别为1.21 cm、0.48 cm、1.79 cm;BDS/GPS组合PPP在E、N、U方向的均方根误差分别为1.21 cm、0.50 cm、1.87 cm。在动态定位中,BDS PPP外符合精度水平方向优于10 cm,高程方向优于15 cm;GPS PPP和BDS/GPS组合PPP的外符合精度水平方向均优于5 cm,高程方向均优于8 cm。另外,无论是在静态还是动态的PPP中,组合系统相对于单系统,能大大缩短收敛时间,减少定位结果抖动,尤其是相对于BDS PPP来说,优势更为明显。  相似文献   

13.
BeiDou、Galileo、GLONASS、GPS多系统融合精密单点   总被引:2,自引:1,他引:1  
任晓东  张柯柯  李星星  张小红 《测绘学报》2015,44(12):1307-1313
随着中国BeiDou系统与欧盟Galileo系统的出现以及俄罗斯GLONASS系统的恢复完善,过去单一的GPS导航卫星系统时代已经逐步过渡为多系统并存且相互兼容的全球性卫星导航系统(multi-constellation global navigation satellite systems,multi-GNSS)时代,多系统GNSS融合精密定位将成为未来GNSS精密定位技术的发展趋势。本文采用GPS、GLONASS、BeiDou、Galileo 4大卫星导航定位系统融合的精密单点定位(precise point positioning,PPP)实测数据,初步研究并分析了4系统融合PPP的定位性能。试验结果表明:在单系统观测几何构型不理想的区域,多系统融合能显著提高PPP的定位精度和收敛速度。4大系统融合的PPP收敛速度相对于单GNSS可提高30%~50%,定位精度可提高10%~30%,特别是对高程方向的贡献更为明显。此外,在卫星截止高度角大于30°的观测环境下,单系统由于可见卫星数不足导致无法连续定位,而多系统融合仍然可以获得PPP定位结果,尤其是水平方向具有较高的定位精度。这对于山区、城市以及遮挡严重的区域具有非常重要的应用价值。  相似文献   

14.
多模全球导航卫星系统(Global Navigation Satellite System,GNSS)精密单点定位(precise point positioning,PPP)存在系统间偏差(inter-system bias,ISB),构建了顾及系统间偏差的多模GNSS融合PPP算法,对多星座实验(the multi-GNSS experiment,MGEX)监测网中的7个测站观测数据进行静态解算,获得Galileo、GLONASS、北斗与全球定位系统之间的ISB值。分析结果表明,四系统PPP融合定位在水平分量和高程分量的精度分别为8.9 mm、5.3 mm和10.9 mm,体现出较高的融合定位精度。不同系统ISB值在单天内的稳定性较好,均优于0.12 ns。从多天ISB序列看,ISB存在不规律跳变,变化幅度可达近20 ns。不同类型接收机ISB存在一定差异,同一类型接收机结果相近。综合来看,Galileo ISB值最稳定且结果最优,北斗与GLONASS结果相当。  相似文献   

15.
This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with \(7{^{\circ }}\) cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical components, respectively. When the cutoff elevation angle is increased to \(30{^{\circ }}\), the GPS-only PPP AR results are very unreliable, while 13.44 min of TTFF is still achievable for GCRE four-system solutions.  相似文献   

16.
Although integer ambiguity resolution (IAR) can improve positioning accuracy considerably and shorten the convergence time of precise point positioning (PPP), it requires an initialization time of over 30 min. With the full operation of GLONASS globally and BDS in the Asia–Pacific region, it is necessary to assess the PPP–IAR performance by simultaneous fixing of GPS, GLONASS, and BDS ambiguities. This study proposed a GPS + GLONASS + BDS combined PPP–IAR strategy and processed PPP–IAR kinematically and statically using one week of data collected at 20 static stations. The undifferenced wide- and narrow-lane fractional cycle biases for GPS, GLONASS, and BDS were estimated using a regional network, and undifferenced PPP ambiguity resolution was performed to assess the contribution of multi-GNSSs. Generally, over 99% of a posteriori residuals of wide-lane ambiguities were within ±0.25 cycles for both GPS and BDS, while the value was 91.5% for GLONASS. Over 96% of narrow-lane residuals were within ±0.15 cycles for GPS, GLONASS, and BDS. For kinematic PPP with a 10-min observation time, only 16.2% of all cases could be fixed with GPS alone. However, adding GLONASS improved the percentage considerably to 75.9%, and it reached 90.0% when using GPS + GLONASS + BDS. Not all epochs could be fixed with a correct set of ambiguities; therefore, we defined the ratio of the number of epochs with correctly fixed ambiguities to the number of all fixed epochs as the correct fixing rate (CFR). Because partial ambiguity fixing was used, when more than five ambiguities were fixed correctly, we considered the epoch correctly fixed. For the small ratio criteria of 2.0, the CFR improved considerably from 51.7% for GPS alone, to 98.3% when using GPS + GLONASS + BDS combined solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号