首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang  Tao  Dai  Junwu  Yang  Yongqiang  Bai  Wen  Pang  Hui  Liu  Rongheng 《地震工程与工程振动(英文版)》2022,21(4):1119-1135

Typical all-steel buckling-restrained braces (BRBs) usually exhibit obvious local buckling, which is attributed to the lack of longitudinal restraint to the rectangle core plate. To address this issue, all-steel BRBs are proposed, in which two T-shaped steel plates are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. In order to investigate the factors that characterize the hysterical responses of this device, different finite element (FE) models are developed for the specific context. The FE models are developed based on nonlinear finite element software, which incorporate continuum (shell or brick) elements, large displacement, and deformation formulations. In these FE models, two different steel constitutive models are adopted to precisely reproduce the cyclic response of the BRB component. Meanwhile, comparisons between the numerical and experimental results are conducted to validate the effectiveness and accuracy of the robust FE model. The agreements between experimental observations and numerical predictions demonstrate that the FE method could be utilized for in depth parametric analysis. Furthermore, BRBs with detailed configurations can provide excellent hysteretic behavior and seismic performance through the optimal design process.

  相似文献   

2.
Cyclic loading tests and finite element analyses on six novel all‐steel buckling‐restrained braces (BRBs) are conducted using different loading patterns to investigate the core plate high‐mode buckling phenomenon. The proposed BRB is composed of a core member and a pair of identical restraining members, which restrains the core member by using bolted shim spacers. The design of the proposed BRB allows the core plate to be visually inspected immediately following a major earthquake. If necessary, the pair of restraining members can be conveniently disassembled, and the damaged core plate can be replaced. Test results indicate that the proposed BRBs can sustain large cyclic strain reversals and cumulative plastic deformations in excess of 400 times the yield strain. Experimental and analytical results confirm that the high‐mode buckling wavelength is related to the core plate thickness and the applied loading patterns. The larger the axial compressive strain is applied, the shorter the high‐mode buckling wavelength would be developed. The buckling wavelength is about 12 times the core plate thickness when the high‐mode buckling shape is fully developed. However, it reduces to about 10 times the core plate thickness when a compressive core strain reaches greater than 0.03. The high‐mode bucking wavelength can be satisfactorily predicted using the proposed method or from the finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A thin‐profile buckling‐restrained brace (thin‐BRB) consists of a rectangular steel casing and a flat steel core that is parallel to a gusset plate. A thin configuration reduces the width of the restraining member and thus saves usable space in buildings. However, deformable debonding layers, which cover the steel core plate in order to mitigate the difference between the peak tensile and compressive axial forces, provide a space for the steel core to form high mode buckling waves when the thin‐BRB is under compression. The wave crests squeeze the debonding layers and produce outward forces on the inner surface of the restraining member. If the restraining member is too weak in sustaining the outward forces, local bulging failure occurs and the thin‐BRB loses its compression capacity immediately. In order to investigate local bulging behavior, a total of 22 thin‐BRB specimens with a ratio of steel core plate to restraining steel tube depth ranging from 0.3 to 0.7 and axial yield force capacities ranging from 421 kN to 3036 kN were tested by applying either cyclically increasing, decreasing, or constant axial strains. The restraining steel tube widths of all the specimens were smaller than 200 mm and were infilled with mortar with a compressive strength of 97 MPa or 55 MPa. Thirteen of the 22 thin‐BRB specimens' restraining members bulged out when the compressive core strains exceeded 0.03. A seismic design method of the thin‐BRB in preventing local bulging failure is proposed in this study. Test and finite element model (FEM) analysis results suggest that the outward forces can be estimated according to the BRB compressive strength, steel core high mode buckling wavelength, and the debonding layer thickness. In addition, the capacity of the restraining member in resisting the outward forces can be estimated by using the upper bound theory in plastic analysis. Both the FEM analysis and test results indicate that the proposed method is effective in predicting the possibility of local bulging failure. Test results indicate that the proposed design method is conservative for thin‐BRB specimens with a large steel core plate to restraining steel tube depth ratio. This paper concludes with design recommendations for thin‐BRBs for severe seismic services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the results of 12 full‐scale tests on buckling‐restrained brace (BRB) specimens. A simple‐to‐fabricate all‐steel encasing joined by high‐strength bolts was used as the buckling‐restrainer mechanism. Steel BRBs offer significant energy dissipation capability through nondeteriorating inelastic response of an internal ductile core. However, seismic performance of BRBs is characterized by interaction between several factors. In this experimental study, the effects of core‐restrainer interfacial condition, gap size, loading history, bolt spacing, and restraining capacity are evaluated. A simple hinge detail is introduced at the brace ends to reduce the flexural demand on the framing components. Tested specimens with bare steel contact surfaces exhibited satisfactory performance under the American Institute of Steel Construction qualification test protocol. The BRBs with friction‐control self‐adhesive polymer liners and a graphite‐based dry lubricant displayed larger cumulative inelastic ductility under large‐amplitude cyclic loading, exceeding current code minimum requirements. The BRB system is also examined under repeated fast‐rate seismic deformation history. This system showed significant ductility capacity and remarkable endurance under dynamic loading. Furthermore, performance is qualified under long‐duration loading history from subduction zone's megathrust type of earthquake. Predictable and stable performance of the proposed hinge detail was confirmed by the test results. Internally imposed normal thrust on the restrainer is measured using series of instrumented bolts. Weak‐ and strong‐axis buckling responses of the core are examined. Higher post‐yield stiffness was achieved when the latter governed, which could be advantageous to the overall seismic response of braced frames incorporating BRBs.  相似文献   

5.
The implementation of buckling‐restrained braces (BRBs) for new reinforced concrete frame (RCF) constructions is limited. This study investigates the seismic forces and stability in the BRBs and gussets of a 2‐story full‐scale RCF specimen by using Abaqus models and a newly proposed stability evaluation method. The hybrid and cyclic loading test results are accurately predicted by the Abaqus analyses. Existing methods for computing the gusset interface forces for steel buildings from both the brace and the frame actions are compared with the Abaqus results. The applicability of these methods for the BRB‐RCF design is critically evaluated. It is confirmed that the Parallel‐2 method is suitable for estimating the BRB force demand imposed on the corner gusset and the generalized uniform force method is good for the corner gusset at the base. In addition, existing stability evaluation methods for BRBs and gussets are applied to investigate the out‐of‐plane (OOP) buckling of the first‐story BRB observed at the end of tests. The proposed stability model incorporates the BRB restrainer's flexural effects and 4 rotational springs in assessing the BRB's buckling. This model confirms that the BRB and the gusset's OOP buckling limit states could be coupled and must be evaluated together. By incorporating the flexural effects of the steel casing and the infilled grout, the proposed model satisfactorily predicts the OOP buckling of the first‐story BRB and gussets. These research results can be used for the implementation of BRBs in new RC frame constructions.  相似文献   

6.
This paper proposes a novel implementation of buckling‐restrained braces (BRB) in new reinforced concrete (RC) frame construction. Seismic design and analysis methods for using a proposed steel cast‐in anchor bracket (CAB) to transfer normal and shear forces between the BRB and RC members are investigated. A full‐scale two‐story RC frame with BRBs (BRB‐RCF) is tested using hybrid and cyclic loading test procedures. The BRBs were arranged in a zigzag configuration and designed to resist 70% of the story shear. The gusset design incorporates the BRB axial and RCF actions, while the beam and column members comply with ACI 318‐14 seismic design provisions. Test results confirm that the BRBs enhanced the RCF stiffness, strength, and ductility. The hysteresis energy dissipation ratios in the four hybrid tests range from 60% to 94% in the two stories, indicating that BRBs can effectively dissipate seismic input energy. When the inter‐story drift ratio for both stories reached 3.5% in the cyclic loading test, the overall lateral force versus deformation response was still very stable. No failure of the proposed steel CABs and RC discontinuity regions was observed. This study demonstrates that the proposed design and construction methods for the CABs are effective and practical for real applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
详细介绍了近年来中国学者在屈曲约束支撑研究方面取得的研究成果,着重讨论了屈曲约束支撑构件(核心单元、约束机构、无黏结构造层)和整体抗震性能以及设计方法的研究现状。结果表明:屈曲约束支撑以其良好的耗能性能具有很好的发展潜力,屈曲约束支撑的适用范围不断拓展,结构形式更趋多样化,设计方法不断优化。  相似文献   

9.
Buckling‐restrained braces (BRBs) are widely used as ductile seismic‐resistant and energy‐dissipating structural members in seismic regions. Although BRBs are expected to exhibit stable hysteresis under cyclic axial loading, one of the key limit states is global flexural buckling, which can produce an undesirable response. Many prior studies have indicated the possibility of global buckling of a BRB before its core yields owing to connection failure. In this paper, BRB stability concepts are presented, including their bending‐moment transfer capacity at restrainer ends for various connection stiffness values with initial out‐of‐plane drifts, and a unified simple equation set for ensuring BRB stability is proposed. Moreover, a series of cyclic loading tests with initial out‐of‐plane drifts are conducted, and the results are compared with those of the proposed equations. © 2013 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

10.
针对传统的混凝土灌浆型和全钢型防屈曲支撑质量较大,无法适用于大跨空间结构等轻型建筑的问题,本文提出一种铝管约束轻型防屈曲支撑的设计方法。在核心钢管和约束管间设置不同宽度的间隙并对部分核心钢管进行开孔,通过拉压往复试验,研究了间隙和开孔对试件性能的影响,得到构件的相关恢复力特征,并分析了试件相关参数对耗能特性的影响。结果表明,本文设计的轻型防屈曲约束支撑,滞回曲线饱满,耗能效果良好;核心钢管宜开孔且支撑间隙应设置在1 mm左右,以减轻试件端部压力并简化施工工艺。  相似文献   

11.
This paper is Part II of a two‐part paper describing a full‐scale 3‐story 3‐bay concrete‐filled tube (CFT)/buckling‐restrained braced frame (BRBF) specimen tested using psuedo‐dynamic testing procedures. The first paper described the specimen design, experiment, and simulation, whereas this paper focuses on the experimental responses of BRBs and BRB‐to‐gusset connections. This paper first evaluates the design of the gusset connections and the effects of the added edge stiffeners in improving the seismic performance of gusset connections. Test results suggest that an effective length factor of 2.0 should be considered for the design of the gusset plate without edge stiffeners. Tests also confirm that the cumulative plastic deformation (CPD) capacity of the BRBs adopted in the CFT/BRBF was lower than that found in typical component tests. The tests performed suggest that the reduction in the BRB CPD capacities observed in this full‐scale frame specimen could be due to the significant rotational demands imposed on the BRB‐to‐gusset joints. A simple method of computing such rotational demands from the frame inter‐story drift response demand is proposed. This paper also discusses other key experimental responses of the BRBs, such as effective stiffness, energy dissipation, and ductility demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In order to enhance the durability of high‐performance buckling‐restrained braces (BRBs) used in bridge engineering, which are expected to withstand severe earthquakes three times without being replaced, aluminum alloys were employed to manufacture BRBs. A series of low‐cycle fatigue tests, including 18 specimens, were conducted to address the low‐cycle fatigue strength of the aluminum alloy BRB. Test results of all specimens show that stable hysteretic curves were obtained without overall buckling occurrence. Failure mode of the welded aluminum alloy BRB is obviously affected by the ribs' welding under the variable or constant strain amplitude condition. Therefore, another type of aluminum alloy BRB, the bolt‐assembled BRB with or without spot‐welded stoppers, is proposed and tested. Results showed that the low‐cycle fatigue performance of bolt‐assembled BRBs with stoppers improved four to five times compared with welded BRBs. However, the stoppers' spot welding has an adverse effect on the failure mode because the crack, which induced the specimen's failure, initiated from the spot weld toes of the stoppers. Both bolt‐assembled BRBs with and without stoppers can meet the cumulative inelastic deformation requirement proposed for high‐performance BRBs under the constant strain amplitude, not larger than 2%. In addition, under the variable strain amplitude condition, only the bolt‐assembled BRB without stoppers has an excellent cumulative inelastic deformation capacity and sustains two cycles of 2.5% strain amplitude. Finally, recommended Manson–Coffin equations and preliminary cumulative damage formulae for welded and bolt‐assembled BRBs are given as the references of the strain‐based damage evaluation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The seismic performance tests of a full‐scale five‐story passively controlled steel building were conducted on the E‐Defense shaking table in Japan in March 2009. Before the tests, a blind prediction contest was held to allow researchers and practitioners from all over the world to construct analytical models and predict the dynamic responses of the steel frame specimen equipped with buckling‐restrained braces (BRBs) or viscous dampers (VDs). This paper presents the details of two refined prediction models made and results obtained before the tests. When the proposed analytical modeling techniques are adopted as in the two refined prediction models, the overall prediction accuracy is about 90%. Sensitivity studies conducted after the tests are also presented in this paper. The effects of varying each modeling feature on the response simulation accuracy have been investigated. The analytical results suggest that considering concrete full‐composite actions for beam members could improve prediction accuracy by about 20% against using the simplified bare steel beam model. Adopting refined BRB stiffness computed from incorporating finite‐element gusset stiffness only improves the overall prediction accuracy by 0.9%. Considering the BRB dynamic loading test results for analytical BRB strength reduces the error by 1.9%. For the VD frame, incorporating the brace and VD stiffness could improve the overall prediction accuracy by about 15%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The debonding mechanism has a significant effect on the performance of a buckling‐restrained brace (BRB). In this paper, a method for estimating the compression strength adjustment factor for any given BRB core strain is presented. Experimental investigations were conducted on four BRBs to examine the efficiency of four different debonding materials in reducing the difference between the cyclic peak compression and tension. Test results indicate that chloroprene rubber is very easy to install and very effective in minimizing the difference between the compressive and tensile capacities. The excellent performance of 13 full‐scale welded end‐slot BRBs (WES‐BRBs) is illustrated through experiments. Cyclic loading test results of a 12.5‐m long jumbo WES‐BRB reveal that its peak compressive strength exceeds 16,800 kN and its maximum core strain reaches 0.035. All WES‐BRBs show satisfactory performance with a very stable hysteresis response, modest peak compressive to tensile strength ratio, and very predictable axial stiffness. These specimens sustain a cumulative plastic deformation of greater than 400 times the yield deformation. The hysteresis responses can be satisfactorily predicted by using a two‐surface plasticity analytical model. Advantages of the welded end‐slot connections are also presented through a discussion on the effects of the BRB yield region length ratio on the effective stiffness, the yield story drift, and the core strain level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In‐plane buckling‐restrained brace (BRB) end rotation induced by frame action is a commonly observed phenomenon in buckling‐restrained braced frames (BRBFs). However, its effect on BRB end connection behavior has not yet been clear. In this study, four BRB end deformation modes for quick determination of end rotational demand are proposed for non‐moment BRBF considering different BRB arrangements, installing story of BRBs, and boundary condition of corner gussets connected with column base. Key factors affecting BRB end rotation and flexural moments are examined theoretically by parametric analysis. Subassemblage tests of seven BRB specimens under horizontal cyclic loading were conducted by adopting two loading frames to impose the expected BRB end deformations. It shows that BRB end rotation subjected BRB ends to significant flexural moments, leading to premature yielding of BRB ends or even tendency of end zone buckling. The deformation modes, the flexural rigidity of BRB ends, and the initial geometric imperfections of BRBs were found to have significant influence on BRB end connection behavior. The triggering moment induced by BRB end rotation was the main contributor to end flexural moment. However, the moment amplification effect induced by flexure of BRB end zones became prominent especially for small flexural rigidity of BRB ends. Implications and future research needs for design of BRB end connections are provided finally based on the theoretical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
为简化防屈曲支撑的加工工艺,提高防屈曲支撑的初始刚度和在小变形下的耗能能力,基于现有防屈曲支撑在截面形式与构造方式上的特点,提出了一种新型钢铅组合防屈曲支撑并进行了构造设计。通过有限元数值模拟,分析了钢铅组合防屈曲支撑的耗能特性与效果,建立了恢复力简化模型,并根据理想弹塑性材料本构关系推导出滞回规则。通过对不同设计参数的理论分析和数值模拟,分析了钢铅屈服力比、铅剪切面长宽比、核心段宽厚比和耗能段长度等参数对防屈曲支撑滞回性能的影响。研究结果表明,钢铅组合防屈曲支撑能够提供较大的抗侧刚度,耗能效果良好,加工工艺简单,适合工程应用。  相似文献   

17.
A new method of retrofitting reinforced concrete (RC) frames with buckling‐restrained braces (BRBs) to improve frame strength, stiffness and energy dissipation is proposed. Instead of typical post‐installed anchors, load is transferred between the BRB and RC frame through compression bearing between an installed steel frame connected to the BRB, and high‐strength mortar blocks constructed at the four corners of the RC frame. This avoids complex on‐site anchor installation, and does not limit the allowable brace force by the anchor strength. Cyclic displacements of increasing amplitudes were imposed on two RC frame specimens retrofitted with different BRB strength capacities. In one of the frames, the bearing blocks were reinforced with wire mesh to mitigate cracking. A third RC frame was also tested as a benchmark to evaluate the retrofit strength and stiffness enhancements. Test results indicate that the proposed method efficiently transferred loads between the BRBs and RC frames, increasing the frame lateral strength while achieving good ductility and energy‐dissipating capacity. When the bearing block was reinforced with wire mesh, the maximum frame lateral strength and stiffness were more than 2.2 and 3.5 times the RC frame without the BRB respectively. The BRB imposes additional shear demands through the bearing blocks to both ends of the RC beam and column member discontinuity regions (D‐regions). The softened strut‐and‐tie model satisfactorily estimated the shear capacities of the D‐regions. A simplified calculation and a detailed PISA3D analysis were shown to effectively predict member demands to within 13.8% difference of the measured test results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The original structural design of this case study consisted of five basement floors and a 34‐story hotel tower in Kaohsiung, Taiwan. The construction started in 1993, and the erection of the entire steel frame and the pouring of concrete slabs up to the 26th floor were completed before 1996. However, construction of the original hotel was subsequently suspended for 10 years. Recently, this building has been retrofitted for residential purposes. Buckling restrained braces (BRBs) and eccentrically braced frames were incorporated into the seismic design of the new residential tower. This paper presents the seismic resisting structural system, seismic design criteria, full‐scale test results of one BRB member and the as‐built welded moment connections. Test results confirm that the two side web‐plate stiffening details can effectively improve the rotational capacity of welded moment connection. The paper also discusses the analytical models for simulating the experimental responses of the BRB members and the welded moment connections. Nonlinear response history analyses (NLRHA) indicate that the inelastic deformational demands of the original and the redesigned structures induced by the maximum considered earthquakes are less than those found in the seismic building codes or laboratory tests. This paper also proposes a ground motion scaling method considering multi‐mode effects for NLRHA of the example building. It is shown that the proposed scaling method worked well in reducing the scatter in estimated peak seismic demands. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Buckling restrained braces(BRBs)have been widely applied in seismic mitigation since they were introduced in the 1970s.However,traditional BRBs have several disadvantages caused by using a steel tube to envelope the mortar to prevent the core plate from buckling,such as;complex interfaces between the materials used,uncertain precision,and time consumption during the manufacturing processes.In this study,a new device called the multi-curve buckling restrained brace (MC-BRB) is proposed to overcome these d...  相似文献   

20.
Buckling-restrained braces(BRBs)have recently become popular in the United States for use as primary members of seismic lateral-force-resisting systems.A BRB is a steel brace that does not buckle in compression but instead yields in both tension and compression.Although design guidelines for BRB applications have been developed,systematic procedures for assessing performance and quantifying reliability are still needed.This paper presents an analytical framework for assessing buckling-restrained braced f...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号