首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An experimental investigation was conducted to study the performance of precast beam-column concrete connections using T-section steel inserts into the concrete beam and joint core, under reversed cyclic loading. Six 2/3-scale interior beam-column subassemblies, one monolithic concrete specimen and five precast concrete specimens were tested. One precast specimen was a simple connection for a gravity load resistant design. Other precast specimens were developed with different attributes to improve their seismic performance. The test results showed that the performance of the monolithic specimen M1 represented ductile seismic behavior. Failure of columns and joints could be prevented, and the failure of the frame occurred at the flexural plastic hinge formation at the beam ends, close to the column faces. For the precast specimens, the splitting crack along the longitudinal lapped splice was a major failure. The precast P5 specimen with double steel T-section inserts showed better seismic performance compared to the other precast models. However, the dowel bars connected to the steel inserts were too short to develop a bond. The design of the precast concrete beams with lap splice is needed for longer lap lengths and should be done at the beam mid span or at the low flexural stress region.  相似文献   

2.
The behavior of bridge monolithic connections is modeled using a simplified mathematical model that accounts for stress equilibrium, compatibility of deformations, and the state of bond of longitudinal column bars anchored through the joint panel. In this regard, a stress gradient factor is introduced, to model the profile of bar stresses along the anchorage. To establish this factor, two independent mechanisms of stress transfer are considered: a bond mechanism between the anchored bars and the surrounding concrete and a friction mechanism between the anchored bars and the transverse bars that enclose and restrain the anchorages. The model is used for calculation of the shear stress–shear strain relationship of all tests found in the international literature on bridge monolithic connections that showed shear type of failure under simulated seismic loading. Joint strength values calculated with the proposed model are compared with the experimental results. Based on this comparison the proposed model is verified for use in interpretation of bridge monolithic connection behavior and design.  相似文献   

3.
In precast technology, the effective design and construction are related to the behaviour of the connections between the structural members in order to cater for all service, environmental and earthquake load conditions. Therefore, the design and detailing of the connections should be undertaken consistently and with awareness of the desired structural response. In the research presented herein, an analytical expression is proposed for the prediction of the resistance of precast pinned connections under shear monotonic and cyclic loading. The proposed formula addresses the case where the failure of the connection occurs with simultaneous flexural failure of the dowel and compression failure of the concrete around the dowel, expected to occur either when (i) adequate concrete cover of the dowels is provided (d > 6 D) or (ii) adequate confining reinforcement (as defined in the article) is foreseen around the dowels in the case of small concrete covers (d < 6 D). The expression is calibrated against available experimental data and numerical results derived from a nonlinear numerical investigation. Emphasis is given to identifying the effect of several parameters on the horizontal shear resistance of the connection such as: the number and diameter of the dowels; the strength of materials (concrete, grout, steel); the concrete cover of the dowels; the thickness of the elastomeric pad; the type of shear loading (monotonic or cyclic); the pre‐existing axial stress in the dowels; and the rotation of the joint. In addition, recommendations for the design of precast pinned beam‐to‐column connections are given, especially when the connections are utilised in earthquake resistant structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Large panel precast concrete structures are built in major seismic regions throughout the world. The seismic behaviour of such structures is strongly dependent upon the characteristics of both the horizontal and vertical connections. The limiting behaviour of precast systems, however, is basically dependent upon the horizontal connection. The influence of horizontal connections can be studied in terms of the behaviour of a simple wall—a vertical stack of panels having only horizontal connections. This paper reports on research into the seismic behaviour of simple precast concrete walls. The research was carried out through the development of computer-based modelling techniques capable of including the typical behavioural characteristics associated with horizontal joints. The model assumes that all non-linear, inelastic behaviour is concentrated in the connection regions and that the precast panels remain linear elastic. This assumption allows the precast panels to be modelled as statically condensed ‘super-elements’ and the connection regions as interface elements. The above modelling technique allows for non-linear-inelastic seismic analysis that is capable of handling both rocking type motions throughout the height of the structure and slippage due to shear in the plane of the connection. A series of parametric studies are presented to illustrate the potential influence of rocking and slip on precast walls with both regular reinforcement and post-tensioning. These studies demonstrate the period elongation associated with the nonlinear-elastic rocking phenomenon. Shear slip is found to occur only when friction coefficients are extremely low or when the normal forces across the connections are low. This latter case occurs only in low buildings or in the upper floors of tall buildings. The paper concludes with a brief discussion of the design implications of these results. Particular attention is paid to the problems stemming from the force concentrations associated with rocking and shear slip.  相似文献   

5.
Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.  相似文献   

6.
采用带锚筋的锚板、腹板、端板以及加劲板作为连接件,能够通过干式连接方法将上下预制剪力墙构件连为整体。为研究该新型全装配式剪力墙的受力性能和抗震性能,设计了2个剪跨比为0.783的试件和1个相同剪跨比及配筋率的现浇整体墙体,并进行了低周往复拟静力试验,分析了该全装配式剪力墙的承载能力、刚度、延性性能和耗能能力等。研究结果表明:现浇整体墙体和全装配式剪力墙的破坏形式均为受剪破坏,全装配式剪力墙的极限位移角大于现浇整体墙体极限位移角,分别为1/77和1/133,轴压比为0.3时平均延性系数3.47,低于现浇整体墙体平均延性系数4.62;但该全装配式剪力墙具有较高的承载能力和耗能能力。型钢与剪力墙的锚筋需采用穿孔塞焊的形式连接,避免锚筋与锚板焊接的位置发生剪断的现象。  相似文献   

7.
阐述了预制钢筋混凝土剪力墙结构抗震性能研究的重要性和预制钢筋混凝土剪力墙结构抗震性能研究的最新进展。综述了国内外预制钢筋混凝土剪力墙结构设计规范以及设计方法的研究进展。指出常规预制装配式钢筋混凝土剪力墙结构的抗震性能较差,在地震作用下,主要靠结构构件连接处的损伤和结构构件损坏来消耗能量;无粘结后张拉预应力预制混凝土剪力墙结构,在地震作用下具有自恢复中心能力和良好的抗震能力,但该结构体系的耗能能力不足。认为在预制钢筋混凝土剪力墙结构中设置耗能减震元件,或将预制钢筋混凝土剪力墙结构设计成隔震结构,将有效提高预制钢筋混凝土剪力墙结构的抗震性能。该类预制装配式剪力墙结构的抗震性能有待于进一步研究。  相似文献   

8.
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.  相似文献   

9.
Precast concrete panels form attractive facades for steel frame buildings and are generally regarded as non-structural by structural engineers. However, panels have been found to add lateral stiffness until their capacity or that of their connections is exceeded. Consequently, the computed dynamic response based on a model of the structural framing alone may be quite different from that experienced by the actual structure. As a case study, the influence of precast concrete panels on lateral and torsional stiffness of a 25-storey building was investigated. The effect of cladding on dynamic properties and linear seismic response was explored by varying panel stiffness. Cladding stiffness was added to the bare frame model until analytical frequency values matched vibration test results. Then, using the cladding stiffness values obtained, an accidental eccentricity between centres of mass and rigidity at each floor level was imposed and linear seismic response computed. Torsional response effects were increased substantially. Finally, a modified cladding panel connection was developed based on previously-reported studies for panelized construction. The influence of the proposed connection on overall structural response was determined for different ground motion inputs.  相似文献   

10.
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.  相似文献   

11.
钢管混凝土边框钢板剪力墙是一种新型抗震剪力墙,为了比较不同构造措施对该新型剪力墙抗震性能的影响,进行了3个剪跨比为1.5的钢管混凝土边框钢板剪力墙低周反复荷载试验。其中,试验模型1为墙体钢板与边框柱钢管焊接,试验模型2为墙体钢板与边框柱钢管螺栓连接,试验模型3为墙体钢板开孔并与边框柱钢管焊接。通过试验研究,比较了各剪力墙的破坏特征、滞回特性、承载力、刚度、延性以及耗能能力。结果表明:在墙体钢板与边框柱钢管的连接方式中,采用焊接或栓接对剪力墙的整体性能影响不大;与普通钢管混凝土边框钢板剪力墙相比,钢板开孔钢管混凝土边框钢板剪力墙在开孔率不大的情况下,其承载力、延性、刚度和耗能能力没有明显变化。  相似文献   

12.
A refined component model is proposed to predict the inelastic monotonic response of exterior and interior beam‐to‐column joints for partial‐strength composite steel–concrete moment‐resisting frames. The joint typology is designed to exhibit ductile seismic response through plastic deformation developing simultaneously in the column web panel in shear, the bolted end‐plate connection, the column flanges in bending and the steel reinforcing bars in tension. The model can handle the large inelastic deformations consistent with high ductility moment‐resisting frames. Slip response between the concrete slab and the beams was taken into account. A fibre representation was adopted for the concrete slab to accurately capture the non‐uniform stress distribution and progressive crushing of the concrete at the interface between the concrete slab and the column flange. The model is validated against results from full‐scale subassemblages monotonic physical tests performed at the University of Pisa, Italy. A parametric study is presented to illustrate the capabilities of the model and the behaviour of the joints examined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In seismic retrofitting of concrete buildings, frame bays are converted into reinforced concrete (RC) walls by infilling the space between the frame members with RC of a thickness of not more than their width. The cyclic behavior of the resulting wall depends on the connection between the RC infill and the surrounding RC members. The paper uses the results from 56 cyclic tests on such composite walls to express their properties in terms of the geometry, the reinforcement and the connection. Properties addressed are: (a) the yield moment at the story base; (b) the secant-to-yield-point stiffness over the shear span of the wall in a story; (c) the deflection at flexural failure in cyclic loading; (d) the cyclic shear resistance, including a sliding shear failure mode. Separate models are given for squat walls failing in shear and for those where the top of the column shears-off. The proposals are modifications of models developed in the past for monolithic RC walls from several hundred cyclic tests; blind application of these latter models as though the walls were monolithic gives, in general, unsafe predictions. By contrast, the diagonal compression strut approach in ASCE41-06 is safe-sided, but gives unacceptably large prediction scatter.  相似文献   

14.
为了提高装配式剪力墙的抗震性能,提出并设计了一片暗柱内置H型钢装配式内藏钢桁架混凝土剪力墙及一片暗柱内置圆钢管装配式内藏钢桁架混凝土剪力墙,其中H型钢竖向连接采用顶底角钢复合连接,圆钢管竖向连接采用端板焊接.通过对试件进行低周反复加载试验,得到剪力墙试件的破坏模式、滞回曲线、承载力、延性、残余变形、刚度退化和耗能能力等...  相似文献   

15.
全装配式预制混凝土结构梁柱组合件抗震性能试验研究   总被引:15,自引:1,他引:15  
采用足尺模型对比试验方法对现浇高强混凝土梁柱组合件、预制混凝土结构高强混凝土后浇整体式梁柱组合件和高强预制混凝土结构全装配式梁柱组合件在低周反复荷载作用下的开裂破坏形态、滞回特性、骨架曲线、强度与刚度退化特性、耗能能力、节点核心区域的剪切变形、梁端与柱端的转动变形等抗震性能指标进行了系统研究。结果表明:高强预制混凝土结构后浇整体式梁柱组合件与现浇高强混凝土结构梁柱组合件具有相同的抗震能力,全装配式预制混凝土梁柱组合件的抗震性能和主要抗震性能指标与现浇高强混凝土梁柱组合件和预制混凝土结构后浇整体式梁柱组合件存在明显的差异。对于实际工程应用,应采取必要措施增加全装配式节点的耗能能力。  相似文献   

16.
In precast technology, mostly (but not exclusively), frame structures with pinned beam-to-column connections are preferred, especially in low-rise buildings due to the flexibility, lower cost and more favourable behaviour they provide, especially in the case of large spans and pretensioned interconnected members. However the available literature on the behaviour of pinned connections, especially under seismic loading, can be characterized as poor, even though their use in Europe and elsewhere is rather extended. In the terms of the present research a nonlinear 3D numerical model was developed and calibrated against available experimental data to be used as an effective tool for the analytical prediction of the behaviour of pinned connections, under monotonic and cyclic shear loading. The experimental data were derived from the European FP7 project SAFECAST, Grant Agreement Number 218417. The tests were performed at the Laboratory for Earthquake Engineering of the National Technical University of Athens, Greece. From the numerical results useful information was obtained on component level about: (a) the type of the observed failure mechanism; (b) the amount of dissipated energy; (c) the location of the developed plastic hinges along the steel dowel, and (d) the evolution of stresses and strains along the dowel(s) and in the mass of the surrounding grout. However the numerical model can be further utilized to investigate and quantify the effect of several parameters (that were not experimentally investigated in depth, or were not investigated at all) on the response of pinned connections.  相似文献   

17.
Reinforced concrete (RC) precast shear walls are extensively applied in practical engineering, owing to their fast construction speed. However, because of the transport conditions, RC precast shear walls have to be separated into small wall segments during the factory prefabrication procedure before being assembled on site. Typically, wet-type jointing methods are adopted to link the segments, which is time-consuming and results in unreliable post-pouring area strength. To overcome this problem, the novel scheme of the steel shear key (SSK) featuring steel shear panels and combined fillet and plug welding is proposed. Three RC precast shear wall specimens with different linking strength, termed as weakened SSK wall, standard SSK wall, and strengthened SSK wall, respectively, and an integrated shear wall specimen were designed. Quasi-static cyclic loading was applied to investigate the specimens' dynamic properties. The test results suggest the prefabricated wall segments equipped with SSKs showed reliable stiffness and bearing capacity and were improved in energy dissipation ability, compared with conventional shear walls. As the shear stiffness and number of equipped SSKs increased, the specimens exhibited higher strength, but their ductility and energy dissipation were slightly decreased. Most importantly, the standard SSK wall specimen could achieve satisfactory bearing capacity and deformability and is thus recommended for precast building structures. Finite element method (FEM) models were established to validate the test results, and parametric study analysis was conducted based on the coupling ratio of the SSK walls. Finally, an appropriate coupling ratio range is recommended for practical engineering applications.  相似文献   

18.
为研究Tilt-up建筑体系新型再生混凝土夹心保温墙体的抗震性能,设计制作3片分别带有门洞、窗洞、不带洞口的新型再生混凝土夹心保温墙和1片普通再生混凝土剪力墙试件,进行水平低周反复荷载试验。着重考察了墙体的开裂方式、破坏形态、滞回性能、承载力以及刚度退化性能、耗能性能等。试验结果表明:不带洞口的新型再生混凝土夹心保温墙体和传统的再生混凝土墙体均具有良好的抗震性能,洞口形式对新型再生混凝土夹心保温墙体的抗震性能影响较大,提出应严格控制开洞大小和形式,并配置加强筋以防止墙肢发生剪切脆性破坏等建议。  相似文献   

19.
The paper investigates the in-plane performance of horizontal precast reinforced concrete cladding panels, typically adopted in one-storey precast industrial and commercial buildings. Starting from in-field observations of cladding panels failures in recent earthquakes, the seismic performance of typical connections is evaluated by means of experimental tests on full-scale panels under quasi-static cyclic loading. The failure mechanisms highlight the vulnerability of such connections to relative displacements and, therefore, the need to accurately evaluate the connections displacement demand and capacity. An analytical model is developed to describe the force–displacement relationship of the considered connections and compared to the experimental results. In order to determine the seismic vulnerability of such connections and provide design recommendations, linear and nonlinear analyses are conducted taking as reference a precast concrete structure resembling an industrial precast building. The results of the analyses show the importance of a correct estimation of the column’s lateral stiffness in the design process and how an improper erection procedure leads to a premature failure of such connections.  相似文献   

20.
Dry-assembled precast concrete frame structures are typically made with dowel beam-to-column connections, which allow relative rotation along the beam direction. In the orthogonal direction the rotation of the beam is prevented but again the connections of the superimposed floor elements allow for relative rotation. All the ductility and energy dissipation demand in case of seismic action is therefore concentrated at the base of cantilever columns. Hence, the column-to-foundation connection plays a key role on the seismic performance of such structures. Mechanical connection devices, even if correctly designed for what concerns resistance, may affect the behaviour of the whole joint modifying the ductility capacity of the columns and their energy dissipation properties. An experimental campaign on different mechanical connection devices has been performed at Politecnico di Milano within the Safecast project (European programme FP7-SME-2007-2, Grant agreement No. 218417, 2009). The results of cyclic tests on full scale structural sub-assembly specimens are presented. Design rules are suggested for each of the tested connections on the basis of the experimental observations, and numerical analyses have been performed with hysteretic parameters calibrated on the experimental loops. The seismic performance of structures provided with those connections is investigated through a case study on a multi-storey precast building prototype, which has also been subject to full-scale pseudo-dynamic testing within the same research project at the European Laboratory of Structural Assessment of the Joint Research Centre of the European Commission. The comparison of the results from the structure provided with the different studied connections clearly highlights how some solutions may lead to both reduction of ductility capacity and dissipation of energy, increasing the expected structural damage and the seismic risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号