首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
An overall approach to assess the effectiveness of soil conservation measures at catchment scale is the comparison of sediment budgets before and after implementation of a catchment management programme. In the May Zeg‐zeg catchment (187 ha) in Tigray, north Ethiopia, integrated catchment management has been implemented since 2004: stone bunds were built in the whole catchment, vegetation was allowed to re‐grow on steep slopes and other marginal land, stubble grazing abandoned, and check dams built in gullies. Land use and management were mapped and analysed for 2000 and 2006, whereby particular attention was given to the quantification of changes in soil loss due to the abandonment of stubble grazing. Sediment yield was also measured at the catchment's outlet. A combination of decreased soil loss (from 14·3 t ha–1 y–1 in 2000 to 9·0 t ha–1 y–1 in 2006) and increased sediment deposition (from 5·8 to 7·1 t ha–1 y–1) has led to strongly decreased sediment yield (from 8·5 to 1·9 t ha–1 y–1) and sediment delivery ratio (from 0·6 to 0·21). This diachronic comparison of sediment budgets revealed that integrated catchment management is most effective and efficient and is the advisable and desirable way to combat land degradation in Tigray and other tropical mountains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Bank erosion can contribute a significant portion of the sediment budget within temperate catchments, yet few catchment scale models include an explicit representation of bank erosion processes. Furthermore, representation is often simplistic resulting in an inability to capture realistic spatial and temporal variability in simulated bank erosion. In this study, the sediment component of the catchment scale model SHETRAN is developed to incorporate key factors influencing the spatio‐temporal rate of bank erosion, due to the effects of channel sinuosity and channel bank vegetation. The model is applied to the Eden catchment, north‐west England, and validated using data derived from a GIS methodology. The developed model simulates magnitudes of total catchment annual bank erosion (617–4063 t y‐1) within the range of observed values (211–4426 t yr‐1). In addition, the model provides both greater inter‐annual and spatial variability of bank eroded sediment generation when compared with the basic model, and indicates a potential 61% increase of bank eroded sediment as a result of temporal flood clustering. The approach developed within this study can be used within a number of distributed hydrologic models and has general applicability to temperate catchments, yet further development of model representation of bank erosion processes is required. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Due to shortage of rainfall and its increasing variability, moisture stress is identified to be one of the most critical factors affecting agricultural productivity in the drylands of Ethiopia. To circumvent this problem, a strategy of supplemental irrigation through surface water harvesting was adopted by the government and several micro‐dams have been built in the semi‐arid parts of the country. However, the benefits from the water harvesting schemes are not sustainable because of rapid water storage loss due to siltation. There is, therefore, an urgent need for improved catchment‐based erosion control and sediment management strategies. The design and implementation of such strategies require data on the rate and magnitude of sediment deposition. To this end, reservoir surveys were conducted to estimate sediment deposition rate for 11 reservoirs identified to be representative of catchments in the Tigray region of northern Ethiopia. Two approaches were employed during the survey: one was based on measurement of sediment thickness in reservoirs while the other was based on comparing the original and existing topography of the reservoir‐beds. The average annual sediment yield estimated for the study sites was about 19 t ha?1 y?1. An equation of the type SSY = 3á36A0á67 (with SSY = area specific sediment yield in t ha?1 y?1 and A = catchment area in km2) was also established for the study region, which is opposite to the ‘universal’ SSY–A relationship. In order to improve the sediment yield predictive capability of A, it was integrated with a factorial index that assesses the catchment's propensity to erosion and potential sediment yield. The effect of accelerated sediment deposition on water storage loss of reservoirs and possible controlling factors of the SSY–A relationship are outlined. The potential semi‐quantitative scoring approach to characterize catchments in terms of erosion sensitivity and the significance of the A‐index approach to predict SSY of similar catchments are also highlighted. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A new, multi‐tracer method is used to track erosion, translocation, and redeposition of sediment in a small watershed, thus allowing for the ?rst time a complete, spatially distributed, sediment balance to be made as a function of landscape position. A 0·68 ha watershed near Coshocton, Ohio, USA was divided into six morphological units, each tagged with one of six rare earth element oxides. Sediment translocation was evaluated by collecting run‐off and by spatially sampling the soil surface. Average measured erosion rate was 6·1 t ha?1, but varied between 40·4 t ha?1 loss from the lower channels to 24·1 t ha?1 gain on the toeslope. With this technique it was possible for the ?rst time to itemize the sediment budget for landscape elements into three components: (1) the soil from the element that left the watershed with run‐off; (2) soil from the element that was redeposited on lower positions, with the spatial distribution of that deposition; and (3) soil originating from the upper positions and deposited on the element, with quanti?cation of relative source areas. The results are incongruous with the current morphology of the watershed, suggesting that diffusion‐type erosion must also play a major role in de?ning the evolution of this landscape. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological and sediment fluxes were monitored for a 1 yr period in a tropical headwater catchment where a 3 yr old logging road caused substantial Hortonian overland flow (HOF) and intercepted subsurface flow (ISSF). On a 51·5 m road section, ISSF became an increasingly important component of total road runoff, up to more than 90% for large storms. The proportion of ISSF contributed by road cuts along more or less planar slopes compared with ISSF from a zero‐order basin (convergent slopes) truncated by the road declined with increasing rainfall. During the monitored storms that generated ISSF along the road, on average, 28% of sediment export and 79% of runoff from the road section were directly attributable to ISSF. Estimates of total sediment export from the road surface (170 t ha?1 yr?1) and suspended sediment export from the logging‐disturbed catchment (4 t ha?1 yr?1) were exceptionally high despite 3 yr of recovery. ISSF caused not only additional road‐generated sediment export, but also exacerbated HOF‐driven erosion by creating a poor foundation for vegetation recovery on the road surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Piping has been recognized as an important geomorphic, soil erosion and hydrologic process. It seems that it is far more widespread than it has often been supposed. However, our knowledge about piping dynamics and its quantification currently relies on a limited number of data for mainly loess‐derived areas and marl badlands. Therefore, this research aimed to recognize piping dynamics in mid‐altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping‐prone soils. It has been expressed by the estimation of erosion rates due to piping and elongation of pipes in the Bere?nica Wy?na catchment in the Bieszczady Mountains, eastern Carpathians (305 ha, 188 collapsed pipes). The research was based on the monitoring of selected piping systems (1971–1974, 2013–2016). Changes in soil loss vary significantly between different years (up to 27.36 t ha?1 yr?1), as well as between the mean short‐term erosion rate (up to 13.10 t ha?1 yr?1), and the long‐term (45 years) mean of 1.34 t ha?1 yr?1. The elongation of pipes also differs, from no changes to 36 m during one year. The mean total soil loss is 48.8 t ha?1 in plots, whereas in the whole studied catchment it is 2.0 t ha?1. Hence, piping is both spatially and temporally dependent. The magnitude of piping in the study area is at least three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under similar land use (grasslands), and it is comparable to the magnitude of surface soil erosion on arable lands. It means that piping constitutes a significant environmental problem and, wherever it occurs, it is an important, or even the main, sediment source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
An excess of fine sediment (grain size <2 mm) supply to rivers leads to reservoir siltation, water contamination and operational problems for hydroelectric power plants in many catchments of the world, such as in the French Alps. These problems are exacerbated in mountainous environments characterized by large sediment exports during very short periods. This study combined river flow records, sediment geochemistry and associated radionuclide concentrations as input properties to a Monte Carlo mixing model to quantify the contribution of different geologic sources to river sediment. Overall, between 2007 and 2009, erosion rates reached 249 ± 75 t km?2 yr?1 at the outlet of the Bléone catchment, but this mean value masked important spatial variations of erosion intensity within the catchment (85–5000 t km?2 yr?1). Quantifying the contribution of different potential sources to river sediment required the application of sediment fingerprinting using a Monte Carlo mixing model. This model allowed the specific contributions of different geological sub‐types (i.e. black marls, marly limestones, conglomerates and Quaternary deposits) to be determined. Even though they generate locally very high erosion rates, black marls supplied only a minor fraction (5–20%) of the fine sediment collected on the riverbed in the vicinity of the 907 km2 catchment outlet. The bulk of sediment was provided by Quaternary deposits (21–66%), conglomerates (3–44%) and limestones (9–27%). Even though bioengineering works conducted currently to stabilize gullies in black marl terrains are undoubtedly useful to limit sediment supply to the Bléone river, erosion generated by other substrate sources dominated between 2007 and 2009 in this catchment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Growing awareness of the wider environmental significance of fine sediment transport by rivers and associated sediment problems linked to sediment–water quality interactions, nutrient and contaminant transfer, and the degradation of aquatic habitats has resulted in the need for an improved understanding of the mobilization and transfer of sediment in catchments to support the development of effective sediment management strategies. The sediment budget provides a key integrating concept for assembling information on the internal functioning of a catchment in terms of its sediment dynamics by providing information on the mobilization, transfer, storage and output of sediment. One key feature of a catchment sediment budget is the relationship between the sediment yield at the catchment outlet and rates of sediment mobilization and transfer within the catchment, which is commonly represented by the sediment delivery ratio. To date, most attempts to derive estimates of this ratio have been based on a comparison of the measured sediment yield from a catchment with an estimate of the erosion occurring within the catchment, derived from an erosion prediction procedure, such as the Universal Soil Loss Equation (USLE) or its revised version, RUSLE. There is a need to obtain more direct and spatially distributed evidence of the erosion rates occurring within a catchment and to characterize the links between sediment mobilization, transfer, storage and output more explicitly. In this context, fallout radionuclides have proved particularly useful as sediment tracers. This paper reports the results of a study aimed at exploring the use of caesium‐137 (137Cs) measurements to establish sediment budgets for three catchments of different sizes and contrasting land use located in Calabria, southern Italy. Long‐term measurements of sediment output were available for the catchments, and, by using the estimates of gross and net rates of soil loss within the catchments provided by 137Cs measurements, it was possible to establish the key components of the sediment budget for each catchment. By documenting the sediment budgets of three catchments of different sizes, the study provides a basis for exploring the effects of scale on catchment sediment budgets and, in particular, the increasing importance of catchment storage as the size of the catchment increases. The results of this study demonstrate a reduction in the sediment delivery ratio from 98 to 2% as catchment area increases from 1·47 ha to 31·2 km2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Reliable quantification of suspended sediment (SS) and particulate phosphorus (PP) transport, and identification of the various delivery pathways at the catchment level, is an important and necessary aid to appropriate catchment management. In this study we measured storm event, seasonal and annual losses of SS and PP from a Danish arable catchment, Gelbæk Stream, using a multisampling strategy. SS losses for the study years May 1993–April 1994 and May 1994–April 1995 ranged from 71 to 88 kg ha−1, while PP losses ranged from 0·32 to 0·36 kg P ha−1. In both cases losses mainly occurred during infrequent storm events. In comparison with intensive storm sampling, infrequent (fortnightly) sampling underestimated annual transport during the two study years by −24 and −331%, respectively, for SS, and by −8·6 and −151%, respectively, for PP. Reliable estimation of the transport of sediment and sediment-associated nutrients and other substances thus necessitates the use of an intensive monitoring approach. Turbidimeters proved to be a good substitute for direct measurement of SS, especially during storm events, although careful calibration is needed at the seasonal and storm event levels. Experience shows that in artificially drained and geologically complex catchments such as Gelbæk, simultaneous comparative monitoring of different sources (e.g. subsurface drainage water) is an important means of reliably discriminating between the various diffuse sources of sediment and phosphorus. Subsurface drainage water was found to account for 11–15% of the annual SS export from the catchment; the corresponding figure for PP being 11–18%. Surface runoff was only a source of SS and PP during the first study year, when it accounted for 19% of SS and 7% of PP catchment export. Stream bank/bed erosion must therefore have been the major diffuse source of SS and PP in both study years. The study also revealed that analysis of the trace element content (e.g. 137Cs, 210Pb) of the SS transported in subsurface drainage water and stream water during storm events is a useful means of discriminating between diffuse losses of SS delivered from topsoil and subsoil compartments. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates temporal variations in fluxes of peat and other sediment in the catchment of March Haigh Reservoir, West Yorkshire. Long‐term estimates of sediment yield were derived from a study of reservoir sediments. Magnetic properties were used to correlate ten cores to a master profile dated using 210Pb and 137Cs. A 14C date suggests that most of the organic component of the sediment is allochthonous and derived from peat eroded from the catchment. Organic sediment yields suggest low catchment erosion rates between 1838 and 1963. Blanket peat erosion increased significantly after 1963, and peaked between 1976 and 1984. Estimates of total sediment yield range between 2 and 28 t km?2 a?1. These yields are significantly lower than those from some previous studies examining reservoir sedimentation in other blanket peat‐covered catchments. The low yield estimates may be due to relatively low rates of erosion in the basin, but may also be partly explained by maintenance of silt traps during the early life of the reservoir and removal of sediment by scouring. Sedimentation within the reservoir is spatially variable, and bathymetry and sediment source appear to be the dominant controls on sedimentation patterns within the reservoir. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
An important gap in the management of land erosion in mining-affected areas is the understanding of the entire sediment routing system and the links between sources and storage at the catchment scale. In this study, we examine sediment delivery and its seasonality in the nickel mining-affected Santa Cruz and Pamalabawan catchments in the Philippines. We monitored discharge, suspended sediment concentrations and suspended sediment loads across 13 sub-catchments with contrasting degrees of mining influence from June 2018 to July 2019. First, we show the importance of the size of the area that has been physically disturbed within our sub-catchments, with as little as 10–22% of relative disturbance area being enough to generate four-fold to eight-fold increase in the sediment yield relative to less disturbed and pristine areas. We found that sub-catchments with > 10% disturbance exhibit the highest sediment yields (15.5 ± 44.7 t km−2 d−1) compared with sub-catchments with < 10% disturbance (3.6 ± 17.7 t km−2 d−1) and undisturbed catchments (2.0 ± 5.7 t km−2 d−1). We also show that sediment flushing predominantly occurs in the most disturbed sub-catchments at the onset of the wet season. A small number of flood events transports the bulk of the sediment, with hysteresis effects being most pronounced in disturbed areas. Lastly, we show that floodplain sediment recycling exerts a key control on sediment delivery at both reach and catchment scales, with the relative contribution of floodplain sources to the sediment budget becoming dominant in the latter stages of the wet season- up to 89% of the total sediment export per storm event. This study highlights the importance of both degree of disturbance and sediment pathways in controlling sediment transport in mining-disturbed areas, and that considering the entire sediment routing system including intermediate stores is crucial to optimizing existing and future measures against siltation and potential contamination of trace metals and metalloids downstream of mining areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号