首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in chemical weathering extent and character are expected to exist across topographic escarpments due to spatial gradients of climatic and/or tectonic forcing. The passive margin escarpment of south‐eastern Australia has a debated but generally accepted model of propagation in which it retreated (within 40 Ma) to near its current position following rifting between Australia and New Zealand 85–100 Ma before present. We focus on this escarpment to quantify chemical weathering rates and processes and how they may provide insight into scarp evolution and retreat. We compare chemical weathering extents and rates above and below the escarpment using a mass balance approach coupling major and trace element analyses with previous measurements of denudation rates using cosmogenic nuclides (10Be and 26Al). We find a slight gradient in saprolite chemical weathering rate as a percentage of total weathering rate across the escarpment. The lowlands area, encompassing the region extending from the base of the escarpment to the coast, experiences a greater extent of chemical weathering than the highland region above the escarpment. Percents of denudation attributable to saprolite weathering average 57 ± 6% and 47 ± 7% at low and high sites respectively. Furthermore, the chemical index of alteration (CIA), a ratio of immobile to mobile oxides in granitic material that increases with weathering extent, have corresponding average values of 73·7 ± 3·9 and 65·5 ± 3·4, indicating lower extents of weathering above the escarpment. Finally, we quantify variations in the rates and extent of chemical weathering at the hillslope scale across the escarpment to suggest new insight into how climate differences and hillslope topography help drive landscape evolution, potentially overprinting longer term tectonic forcing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Most hillslope studies examining the interplay between climate and earth surface processes tend to be biased towards eroding parts of landscapes. This limitation makes it difficult to assess how entire upland landscapes, which are mosaics of eroding and depositional areas, evolve physio‐chemically as a function of climate. Here we combine new soil geochemical data and published 10Be‐derived soil production rates to estimate variations in chemical weathering across two eroding‐to‐depositional hillslopes spanning a climate gradient in southeastern Australia. At the warmer and wetter Nunnock River (NR) site, rates of total soil (–3 to –14 g m‐2 yr‐1; negative sign indicates mass loss) and saprolite (–18 to –32 g m‐2 yr‐1) chemical weathering are uniform across the hillslope transect. Alternatively, the drier hillslope at Frog's Hollow (FH) is characterized by contrasting weathering patterns in eroding soils (–30 to –53 g m‐2 yr‐1) vs. depositional soils (+91 g m‐2 yr‐1; positive sign indicates mass addition). This difference partly reflects mineral grain size sorting as a result of upslope bioturbation coupled with water‐driven soil erosion, as well as greater vegetative productivity in moister depositional soils. Both of these processes are magnified in the drier climate. The data reveal the importance of linking the erosion–deposition continuum in hillslope weathering studies in order to fully capture the coupled roles of biota and erosion in driving the physical and chemical evolution of hillslopes. Our findings also highlight the potential limitations of applying current weathering models to landscapes where particle‐sorting erosion processes are active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Soil‐covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil‐mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X‐ray fluorescence spectroscopy, and for clay mineralogy by X‐ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices – the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon–aluminium ratio – with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4·7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
South Cameroon is located in a tropical and tectonically quiescent region, with landscapes characterized by thick highly weathered regolith, indicative of the long‐term predominance of chemical weathering over erosion. Currently this region undergoes huge changes due to accelerated mutations related to a growing population and economical developments with associated needs and increasing pressures on land and natural resources. We analysed two of the main south Cameroon rivers: the Nyong River and Sanaga River. The Sanaga catchment undergoes a contrasted tropical climate from sub‐humid mountainous and humid climate and is impacted by deforestation, agriculture, damming, mining and urbanization, especially in the Mbam sub‐basin, draining the highly populated volcanic highlands. By contrast, the Nyong catchment, only under humid tropical climate, is preserved from anthropogenic disturbance with low population except in the region of Yaoundé (Méfou sub‐basin). Moreover the Nyong basin is dam‐free and less impacted by agriculture and logging. We explore both denudation temporal variability and the ratio between chemical and physical denudation through two catchment‐averaged erosion and denudation datasets. The first one consists of an 11‐year long gauging dataset, while the second one comes from cosmogenic radionuclides [CRNs, here beryllium‐10 (10Be)] from sand sampled in the river mainstreams (timescale of tens to hundreds of thousands of years). Modern fluxes estimated from gauging data range from 5 to 100 m/Ma (10 to 200 t/km2/yr); our calculations indicate that the usual relative contribution of chemical versus physical denudation is 60% and 40%, respectively, of the total denudation. Beryllium‐10 denudation rates and sediment fluxes range from 4.8 to 40.3 m/Ma or 13 to 109 t/km2/yr, respectively, after correction for quartz enrichment. These fluxes are slightly less than the modern fluxes observed in Cameroon and other stable tropical areas. The highest 10Be‐derived fluxes and the highest physical versus chemical denudation ratios are attributed to anthropogenic impact. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The impact of intensive farming on chemical weathering in the Critical Zone is still an open question. Extensively instrumented and monitored over the last 50 years, the Orgeval Critical Zone Observatory (CZO) in France is an observation site impacted by intensive farming since the 1960s. The Orgeval observatory represents an ideal place to study the response and resilience capability of the Critical Zone under agricultural stress. This paper investigates the chemical composition of different water bodies in two nested catchments of the Orgeval CZO, including rainfall, springs, rivers, and rocks, over one and half hydrological year. We show that elemental and strontium isotopic ratios are powerful to constrain the origin of the elements. The results show that the river chemistry at the outlet of the two nested catchments is dominated by rain inputs (particularly atmospheric dust dissolution) and the chemical weathering of limestone and gypsum. Fertilizer input is clearly visible, although the distinction between gypsum dissolution and fertilizer inputs needs more investigation. The mixtures of water masses inferred from our data are in good agreement with the hydrological context of the watershed, that is, a multilayered aquifer structure. At the main outlet of the CZO, we estimate that the input of ocean‐derived solutes through rainfall represents 7 t km?2 year?1, on the same order of magnitude as the net fertilizer input (10 t km?2 year?1), and that rock weathering releases 50 t km?2 year?1. Including previously published physical erosion rates, we estimate that the total denudation rate (physical and chemical) of the Orgeval CZO is 20 mm (1,000 year)?1, which, along with the entire Seine watershed, is among the lowest chemical denudation rates for carbonate terrains under temperate climate. Chemical denudation is about 10 times higher than physical erosion in the Orgeval CZO. The consumption of CO2 by rock weathering is estimated to be between 265.103 and 360.103 molC km2 year?1, similar for the two nested catchments. Compared with the rivers, the springs show a higher CO2 consumption rate that suggests, as pointed out earlier, a enhancement of carbonate dissolution linked to nitrification and thus fertilizer application. The hyporheic zone appears to be a hot spot in the carbon cycle at the Orgeval CZO. This study sheds light on the complex, anthropocenic, interplay between geology, climate, and human activities that characterize and that take place in intensive agriculture regions.  相似文献   

6.
Spatially discontinuous permafrost conditions frequently occur in the European Alps. How soils under such conditions have evolved and how they may react to climate warming is largely unknown. This study focuses on the comparison of nearby soils that are characterised by the presence or absence of permafrost (active‐layer thickness: 2–3 m) in the alpine (tundra) and subalpine (forest) range of the Eastern Swiss Alps using a multi‐method (geochemical and mineralogical) approach. Moreover, a new non‐steady‐state concept was applied to determine rates of chemical weathering, soil erosion, soil formation, soil denudation, and soil production. Long‐term chemical weathering rates, soil formation and erosion rates were assessed by using immobile elements, fine‐earth stocks and meteoric 10Be. In addition, the weathering index (K + Ca)/Ti, the amount of Fe‐ and Al‐oxyhydroxides and clay minerals characteristics were considered. All methods indicated that the differences between permafrost‐affected and non‐permafrost‐affected soils were small. Furthermore, the soils did not uniformly differ in their weathering behaviour. A tendency towards less intense weathering in soils that were affected by permafrost was noted: at most sites, weathering rates, the proportion of oxyhydroxides and the weathering stage of clay minerals were lower in permafrost soils. In part, erosion rates were higher at the permafrost sites and accounted for 79–97% of the denudation rates. In general, soil formation rates (8.8–86.7 t/km2/yr) were in the expected range for Alpine soils. Independent of permafrost conditions, it seems that the local microenvironment (particularly vegetation and subsequently soil organic matter) has strongly influenced denudation rates. As the climate has varied since the beginning of soil evolution, the conditions for soil formation and weathering were not stable over time. Soil evolution in high Alpine settings is complex owing to, among others, spatio‐temporal variations of permafrost conditions and thus climate. This makes predictions of future behaviour very difficult. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature < 5 °C that exhibited little Na depletion, and locations with physical erosion rates < 20 g m? 2 yr? 1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69 kJ mol? 1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136 kJ mol? 1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss.  相似文献   

8.
Cosmogenic nuclides in rock, soil, and sediment are routinely used to measure denudation rates of catchments and hillslopes. Although it has been shown that these measurements are prone to biases due to chemical erosion in regolith, most studies of cosmogenic nuclides have ignored this potential source of error. Here we quantify the extent to which overlooking effects of chemical erosion introduces bias in interpreting denudation rates from cosmogenic nuclides. We consider two end‐member effects: one due to weathering near the surface and the other due to weathering at depth. Near the surface, chemical erosion influences nuclide concentrations in host minerals by enriching (or depleting) them relative to other more (or less) soluble minerals. This increases (or decreases) their residence times relative to the regolith as a whole. At depth, where minerals are shielded from cosmic radiation, chemical erosion causes denudation without influencing cosmogenic nuclide buildup. If this effect is ignored, denudation rates inferred from cosmogenic nuclides will be too low. We derive a general expression, termed the ‘chemical erosion factor’, or CEF, which corrects for biases introduced by both deep and near‐surface chemical erosion in regolith. The CEF differs from the ‘quartz enrichment factor’ of previous work in that it can also be applied to relatively soluble minerals, such as olivine. Using data from diverse climatic settings, we calculate CEFs ranging from 1.03 to 1.87 for cosmogenic nuclides in quartz. This implies that ignoring chemical erosion can lead to errors of close to 100% in intensely weathered regolith. CEF is strongly correlated with mean annual precipitation across our sites, reflecting climatic influence on chemical weathering. Our results indicate that quantifying CEFs is crucial in cosmogenic nuclide studies of landscapes where chemical erosion accounts for a significant fraction of the overall denudation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we used an archive of borehole logs from the British Geological Survey to collect information on the spatial structure of weathering that extends from the surface to competent bedrock across the Triassic Sherwood Sandstone Group outcrop (750 km2), in the East Midlands, UK. The borehole logs were used to estimate the thickness of the soil (n = 280) and soil and saprolite (S&S) to competent rock (n = 500). The weathering profile of the sandstone consisted of soil (median thickness ~ 1·5 m) overlying a transition zone of compacted and weakly cemented weathered sandstone saprolite over bedrock. Topographic analysis using a NEXTMAP 5 m × 5 m digital elevation model (DEM) revealed no significant relationships between slope properties (relief, flow length, flow accumulation or slope angle) and soil or S&S thickness. A weak, but statistically significant correlation was found between the thickness of the soil and S&S (rs = 0·25, p < 0·001, n = 192). The variation in soil thickness may be related to changes in current and historic and land‐use, variation in sandstone properties and the influence of glacial/peri‐glacial processes. The thickness of the saprolite was more variable towards the southern part of the study area, where it increased to a maximum 40 m. We hypothesize and provide evidence that the greater weathering thickness is related to the occurrence of increased faulting in this part of the study region, allowing increased access to meteoric waters. A possible source of increased water supply is meltwater from Quaternary ice sheets; the overburden of ice may have increased sub‐glacial pore water pressure, with the fractures and faults acting as a drainage system for the removal of dissolved weathering products. British Geological Survey © NERC 2010  相似文献   

10.
The textbook concept of an equilibrium landscape, which posits that soil production and erosion are balanced and equal channel incision, is rarely quantified for natural systems. In contrast to mountainous, rapidly eroding terrain, low relief and slow-eroding landscapes are poorly studied despite being widespread and densely inhabited. We use three field sites along a climosequence in South Africa to quantify very slow (2-5 m/My) soil production rates that do not vary across hillslopes or with climate. We show these rates to be indistinguishable from spatially invariant catchment-average erosion rates while soil depth and chemical weathering increase strongly with rainfall across our sites. Our analyses imply landscape-scale equilibrium although the dominant means of denudation varies from physical weathering in dry climates to chemical weathering in wet climates. In the two wetter sites, chemical weathering is so significant that clay translocates both vertically in soil columns and horizontally down hillslope catenas, resulting in particle size variation and the accumulation of buried stone lines at the clay-rich depth. We infer hundred-thousand-year residence times of these stone lines and suggest that bioturbation by termites plays a key role in exhuming sediment into the mobile soil layer from significant depths below the clay layer. Our results suggest how tradeoffs in physical and chemical weathering, potentially modulated by biological processes, shape slowly eroding, equilibrium landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
How soil erosion rates evolved over the last about 100 ka and how they relate to environmental and climate variability is largely unknown. This is due to a lack of suitable archives that help to trace this evolution. We determined in situ cosmogenic beryllium-10 (10Be) along vertical landforms (tors, boulders and scarps) on the Sila Massif to unravel their local exhumation patterns to develop a surface denudation model over millennia. Due to the physical resistance of tors, their rate of exhumation may be used to derive surface and, thus, soil denudation rates over time. We derived soil denudation rates that varied in the range 0–0.40 mm yr-1. The investigated boulders, however, appear to have experienced repositioning processes about ~20–25 ka bp and were therefore a less reliable archive. The scarps of the Sila upland showed a rapid bedrock exposure within the last 8–15 ka. Overall, the denudation rates increased steadily after 75 ka bp but remained low until about 17 ka bp . The exhumation rates indicate a denudation pulse that occurred about 17–5 ka bp . Since then the rates have continuously decreased. We identify three key factors for these developments – climate, topography and vegetation. Between 75 and 17 ka bp , climate was colder and drier than today. The rapid changes towards warmer and humid conditions at the Pleistocene–Holocene transition apparently increased denudation rates. A denser vegetation cover with time counteracted denudation. Topography also determined the extent of denudation rates in the upland regime. On slopes, denudation rates were generally higher than on planar surfaces. By determining the exhumation rates of tors and scarps, soil erosion rates could be determined over long timescales and be related to topography and particularly to climate. This is key for understanding geomorphic dynamics under current environmental settings and future climate change. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents a semi-empirical model for quantifying the reduction in the mechanical strength of bedrock beneath actively eroding soil-mantled hillslopes. The strength reduction of bedrock controls the rate of physical disintegration of saprolite, which supplies fresh minerals that are then exposed to intense chemical weathering in soil sections. To determine the values of parameters employed in the model requires knowledge of the denudation rate of the hillslope, the thickness of the soil and saprolite layers, the strength of fresh bedrock, and the threshold strength for physical erosion at the uppermost face of the saprolite. These parameters can be obtained from cosmogenic nuclide analyses for quartz samples from the soil–saprolite boundary and basic field- and laboratory-based investigations. Further testing of the model within a diverse range of climatic, tectonic, and lithologic environments is likely to provide clues to the mechanisms responsible for local and regional variations in the rates of soil production and chemical weathering upon hillslopes.  相似文献   

13.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Soil-covered upland landscapes comprise a critical part of the habitable world and our understanding of their evolution as a function of different climatic, tectonic, and geologic regimes is important across a wide range of disciplines. Soil production and transport play essential roles in controlling the spatial variation of soil depth and therefore hillslope hydrological processes, distribution of vegetation, and soil biological activity. Field-based confirmation of the hypothesized relationship between soil thickness and soil production is relatively recent, however, and here we quantify a direct, material strength-based influence on variable soil production across landscapes. We report clear empirical linkages between the shear strength of the parent material (its erodibility) and the overlying soil thickness. Specifically, we use a cone penetrometer and a shear vane to determine saprolite resistance to shear. We find that saprolite shear strength increases systematically with overlying soil thickness across three very different field sites where we previously quantified soil production rates. At these sites, soil production rates, determined from in situ produced beryllium-10 (10Be) and aluminum-26 (26Al), decrease with overlying soil thickness and we therefore infer that the efficiency of soil production must decrease with increasing parent material shear strength. We use our field-based data to help explain the linkages between biogenic processes, chemical weathering, hillslope hydrology, and the evolution of the Earth's surface. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

16.
We examine 10Be concentration in two pit profiles in the Parkajoki area at ∼67°N on the northern Fennoscandian shield in northern Sweden. Due to repeated cover by cold-based, non-erosive ice sheets, the area retains many relict non-glacial features, including tors and saprolites. In the examined pit profiles, gruss-type saprolite developed from weathering of intermediate igneous rocks is overlain unconformably by Weichselian till.Our results show that 10Be concentrations found in the till greatly exceed the levels of 10Be that can have accumulated since deglaciation at ∼11 ka and are comparable to those reported from Pliocene and Early Pleistocene tills in North America. Old tills with grussified boulders at depth were excavated in the Parkajoki area and correlations with neighbouring parts of Finland indicate a Middle Pleistocene or older age. Evidence from pit excavations and geochemistry shows that the underlying saprolites have been truncated by glacial erosion and that previously weathered material has been incorporated into the till sequence. Hence, 10Be inventories in the tills are dominated by material recycled from Middle Pleistocene or older soils, near-surface sediments and saprolite, and cannot be used to date the periods of till deposition. The retention of relict 10Be in the tills nonetheless confirms minimal glacial erosion.Concentrations of meteoric 10Be in the saprolites are lower than any reported saprolite concentrations measured in other settings. Uncertainty in the pre-glaciation 10Be concentrations in the saprolites makes age determinations difficult. One possibility is that that the saprolite had higher 10Be concentrations in the past but that saprolite formation ended after glaciation and burial by till and that the 10Be has substantially decayed. Modelling of the meteoric 10Be depth profiles in this case suggests that the saprolites in the Parkajoki area were formed at a minimum of 2 Ma. Erosion of the saprolite allows an older age of up to ∼5 Ma, with up to 250 cm of material removed and incorporated into later tills. A second possibility is that concentrations of meteoric 10Be in the saprolite were originally lower, with formation of the saprolite in a period or periods of ice- and permafrost-free conditions before 0.8 Ma.  相似文献   

17.
Soil loss on arable agricultural land is typically an order of magnitude higher than under undisturbed native vegetation. Although there have been several recent attempts to quantify these accelerated fluxes at the regional, continental and even global scale, all of these studies have focused on erosion by water and wind and no large scale assessment of the magnitude of tillage erosion has been made, despite growing recognition of its significance on agricultural land. Previous field scale simulations of tillage erosion severity have relied on use of high resolution topographic data to derive the measures of slope curvature needed to estimate tillage erosion rates. Here we present a method to derive the required measures of slope curvature from low resolution, but large scale, databases and use high resolution topographical datasets for several study areas in the UK to evaluate the reliability of the approach. On the basis of a tillage model and land‐use databases, we estimate the mean gross tillage erosion rates for the part of Europe covered by the CORINE database (6·5% of global cropland) and we obtained an average of 3·3 Mg ha–1 y–1, which corresponds to a sediment flux of 0·35 Pg y–1. Water erosion rates derived for the same area are of a similar magnitude. This redistribution of soil within agricultural fields substantially accelerates soil profile truncation and sediment burial in specific landscape positions and has a strong impact on medium‐term soil profile evolution. It is, therefore, clear that tillage erosion must be accounted for in regional assessments of sediment fluxes and in analyses that employ these in the analysis of land management strategies and biogeochemical cycles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

19.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号