首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用麻省理工学院开发的GAMIT/GLOBK软件,将2015年-2016年全球347个IGS站观测数据分七个子网解算,得到一个固定的参考框架来解算云南及周边地区的35个全球卫星导航系统(GNSS)基准站的坐标,测站坐标均方根误差水平方向在0.7 mm以内,垂直方向在0.3 mm以内,水平方向的坐标重复性精度在5 mm以内,垂向坐标的重复性精度大多数在2.5 cm以内;与在ITRF2014下解算的测站坐标、基线长度、水平速度场结果对比表明:测站坐标存在系统误差,水平方向上的差异在8.5 mm以内,垂直方向上在3 cm以内;基线长度差异在2 mm以内,水平速度场在数值上存在毫米级的差异,方向上基本一致.   相似文献   

2.
在研究ITRF坐标系统转换理论和方法的基础上,提出了一种实际可行的框架、历元转换方法,并应用于实际工程快速获得了CGCS2000坐标。结果表明,不同框架坐标在相同历元下坐标差异较小,ITRF2014与ITRF2008、ITRF2005在2021.00历元下的坐标偏差小于5 mm;不同地区地壳构造程度差异导致坐标历元间差别很大。提出了两套中国大陆地区3°×3°速度格网(CGCS2000和ITRF14),可用于快速获取测站速度和历元坐标转换,精度可达厘米级,能在工程中广泛应用。  相似文献   

3.
与之前的国际地球参考框架(ITRF)将全球长期解作为输入数据进行组合不同,ITRF2005将测站坐标(卫星技术每星期的数据和VLBI每24小时的数据)和每天的地球自转参数(EOPs)作为输入数据。使用测站位置时间序列的优势在于可以监控测站的非线性运动和非连续性,并检验框架物理参数即原点和尺度的时变特性。ITRF2005原点定义为:相对于由SLR技术13年的观测数据所得的地球质心的平移和平移速度为零;尺度定义为:相对于由VLBI技术26年的观测数据所得的尺度及其变化率为零;ITRF2005的定向(2000.0历元)及其速率与ITRF2000中70个高质量的测站一致。ITRF2005原点(2000.0历元)及其速率相对于ITRF2000沿X,Y,Z轴在0.1,0.8,5.8mm和0.2,0.1,1.8mm/y的水平上一致,其分量的误差分别为0.3mm和0.3mm/y。两个参考框架原点间一致性差可能是因为SLR网的几何图形差。ITRF2005组合中包含了84个并置站,尺度的不一致性在2000.0历元为1ppb(赤道处为6.3mm),SLR和VLBI由各自时间序列堆栈得到的长期解之间尺度不一致性为0.08ppb/yr。这些不一致性可能是因为SLR和VLBI网形差、并置站质量不好、局部联系的不确定性、系统误差影响以及数据分析中模型改正的不一致性。ITRF历史上,ITRF2005第一次采用了紧组合的方式给出了与之相一致的EOP序列,包括由VLBI和卫星技术得到的极移和仅从VLBI得到的UT和日长数据。  相似文献   

4.
简要分析了最新的国际地球参考框架ITRF2005实现的基本情况及其相对于ITRF2000的改进,以ITRF2005为参考框架建立了新的全球板块运动模型ITRF2005VEL。建模时,首先根据测站的分布和速度场的精度对测站进行初步剔除,然后采用相似变换的方法对全球ITRF2005测站的速度场数据再进行第2次筛选。根据筛选结果利用最小二乘方法建立了全球板块运动背景场及其运动模型,给出了全球11个主要块体的运动参数。此结果与其他学者建立的模型相比,总体上有很好的一致性,但在个别块体上也有所差异。  相似文献   

5.
ITRF中GNSS/SLR并址站归心基线的“一步解”   总被引:1,自引:1,他引:0  
马下平 《测绘学报》2018,47(1):64-70
提出将SLR望远镜的参考点和两轴偏差作为未知参数,在ITRF中联合并址站归心测量中GNSS基线网和地面网观测量(水平方向、垂直角和边长),建立SLR站观测设备的参考点与观测标志、观测标志之间、参考点和两轴偏差与其他未知参数之间的多种约束条件来求解归心基线的“一步解”。利用“一步解”解算出“陆态网络”中北京、昆明和西安3个GNSS/SLR并址站在ITRF2014中的归心基线及其协方差阵。结果显示:归心基线的中误差优于2 mm,与已有分步解相比,差值不超过2 mm;水平轴和垂直轴之间的偏差分别为3.8、0.7和3.6 mm,中误差分别为1.3、1.2和1.3 mm。  相似文献   

6.
ITRF2014是地球参考系的最新实现。该框架利用正弦函数估计负荷对台站位置的季节性效应,与ITRF2008相比,可以得到更稳定、精确的速度场;另外,ITRF2014引入了震后形变模型,可以更好地分析测站的非线性运动。本文通过分析发现:ITRF2014其原点相较于ITRF2008,其符合精度为3.5 mm;两种技术(VLBI和SLR)在2010.0历元确定的尺度因子不符值为1.18 ppb;同时,局部测量解与空间大地测量解解算的本地连接向量仍存在较大不符。  相似文献   

7.
通过对不同的ITRF参考框架下的同一站点数据进行解算,验证了GAMIT/GLOBK软件对GNSS数据基线解算结果精度与ITRF参考框架无关,而与各种改正模型和数据预处理有关。同时通过对GNSS数据的处理、基线解算的结果分析,其坐标值基本没有变化,验证了解算结果的高精度性;连续4 d的同一测站验后均方根误差(NRMS)值几乎没有发生变化,验证了解算精度的稳定性。  相似文献   

8.
2016年1月,最新版本的国际地球参考框架-ITRF2014发布,目前IGS发布的精密星历以及卫星和GNSS天线的天线高改正数据也是基于ITRF2014的,在新的国际框架下利用GNSS严密的分析地面沉降势在必行。本文利用国内某地面沉降严重地区的GNSS数据,基于ITRF2014、瞬时参考历元,详细介绍了利用GNSS分析地面沉降的数据处理方法,并利用框架转换参数、参数年变化率及转换模型,将成果转换至已有资料的相同基准,分析比较重合点,获取点位年变化量,以便后期对沉降严重地区密切的监测,对今后利用GNSS高精度分析地面沉降具有重要的指导意义。  相似文献   

9.
GNSS直接定位成果的坐标基准同观测时刻定位所采用的卫星星历基准是一致的,但有时需要获得测站在不同ITRF框架及对应不同历元的坐标,因此基准转换和历元转换是需要的。本文探讨使用约束平差法和速度场法对GNSS定位成果基准和历元进行转换,并分析所能达到的精度,试验结果表明:两种方法都可以达到5 cm左右的转换精度。  相似文献   

10.
针对中国大陆构造环境监测网络(陆态网络)中观测数据处理的期数过少或解算成果的坐标系统不统一等问题,该文在ITRF2008中对陆态网络239个GNSS基准站从2010年1月至2013年8月的观测数据进行解算,获取站点的坐标时间序列,估计了站点的水平和垂直运动速度场,并分析了中国大陆地壳运动特征。结果表明:GNSS基准站在ITRF2008中的坐标时间序列整体上符合线性变化趋势,东西方向的幅度变化大,高程方向受观测噪声的影响较大一些;高程方向相比较水平方向的年周期性更为明显;水平速度场明显有自西向东运动的趋势,且西藏块体中测站变化最为明显;垂直运动速度场中,华中、华南、华东块体中测站存在较低速率的下降,其他块体的测站存在较低速率的隆升。  相似文献   

11.
ITRF2000和新的全球板块运动模型   总被引:6,自引:0,他引:6  
符养  韩英 《测绘学院学报》2002,19(2):85-87,91
地学工作者一直关注的ITRF2000地球参考框架初步结果已于2001年3月19日公布,ITRF2000综合了VLBI、SLR,LLR,GPS和DORIS技术,产生736个点位坐标和54个核心站,文中介绍了ITRF2000,并利用ITRF2000综合解的结果计算全球板块的欧拉矢量,建立了基于空间实测数据基础 的最新全球板块运动模型。  相似文献   

12.
针对河南省内地表沉降问题,利用河南省地质信息连续采集运行系统(HNGICS)分析全省域内地表形变,对比时间基线为10 a的HNGICS基准站ITRF2014框架下三维坐标,获得河南省内三维速度场,分析河南省内地表形变规律与地质环境相关。结果表明:河南省内整体平面位移变化较小,平面变化10 mm以内的基准站16个,在10~20 mm之间的站点15个,整体趋势表现为由西向东,南部水平位移优势方向为东偏北方向30.7°,平均运动速率为0.87 mm/a;北部平原水平位移优势方向为东偏南方向82.6°,平均运动速率为1.6 mm/a,省域内地表存在明显的相对运动;竖直方向上,东部平原地区平均沉降速率为11.0 mm/a,山区平均沉降速率为1.4 mm/a,山区沉降速率远小于平原地区。  相似文献   

13.
简要介绍了WGS84坐标系和ITRF框架,给出了不同ITRF框架间的坐标转换流程,并利用实例对WGS84与ITRF框架间的转换关系进行了验证分析。结果表明,ITRF2008与WGS84坐标基本一致,但由于ITRF框架的站速度对站坐标的影响与时间成正相关,当需要采用ITRF框架时,应选用最新的国际地球参考框架。  相似文献   

14.
IGS contribution to the ITRF   总被引:2,自引:0,他引:2  
We examine the contribution of the International GNSS Service (IGS) to the International Terrestrial Reference Frame (ITRF) by evaluating the quality of the incorporated solutions as well as their major role in the ITRF formation. Starting with the ITRF2005, the ITRF is constructed with input data in the form of time series of station positions (weekly for satellite techniques and daily for VLBI) and daily Earth Orientation Parameters. Analysis of time series of station positions is a fundamental first step in the ITRF elaboration, allowing to assess not only the stations behavior, but also the frame parameters and in particular the physical ones, namely the origin and the scale. As it will be seen, given the poor number and distribution of SLR and VLBI co-location sites, the IGS GPS network plays a major role by connecting these two techniques together, given their relevance for the definition of the origin and the scale of the ITRF. Time series analysis of the IGS weekly combined and other individual Analysis Center solutions indicates an internal precision (or repeatability) <2 mm in the horizontal component and <5 mm in the vertical component. Analysis of three AC weekly solutions shows generally poor agreement in origin and scale, with some indication of better agreement when the IGS started to use the absolute model of antenna phase center variations after the GPS week 1400 (November 2006).  相似文献   

15.
对近年来精度高、应用较多的国际地球参考架ITRF2005做了简单概述,指出了ITRF2000与ITRF2005之间在解的生成、基准的定义和实现等方面的不同。此外,ITRF2005除了包含作为参考框架体现的站点坐标和速率之外,还包含一起参与联合处理的地球定向参数:极移、极移速率、日长、UT1的时间序列[1]。重点阐明ITRF2005的实现的基本情况及其相对于ITRF2000所作改进的理由和合理性。  相似文献   

16.
由于当前精密星历所对应解算的ITRF框架坐标为ITRF2008参考框架,而在1∶10 000基础测绘生产项目要求提供CGCS2000坐标系成果,论述了ITRF2008到CGCS2000间的框架转换的方法及转换后精度分析,并重点分析了转换的关键性问题。  相似文献   

17.
利用长江三角洲区域内19个GPS连续运行参考站2007~2013年间的观测数据,计算得到了该区域ITRF2005参考框架下的三维速度场、应变参数及区域参考框架下的速度场。结果表明,在ITRF2005框架下,水平方向平均速率为33.97 mm/a,优势方向为NE 111.5°;相对于欧亚板块的水平方向平均速率为9.36 mm/a,优势方向为NE 85.6°;高程方向以沉降为主,最大沉降速率为15.22 mm/a,平均沉降速率为4.7 mm/a;该区域块体以N 29.4° E的拉张为主,达到2.4×10-9/a,同时兼有N 119.4° E的挤压,达到1.3×10-9/a。  相似文献   

18.
The contribution of the International VLBI Service for Geodesy and Astrometry (IVS) to the ITRF2005 (International Terrestrial Reference Frame 2005) has been computed by the IVS Analysis Coordinator’s office at the Geodetic Institute of the University of Bonn, Germany. For this purpose the IVS Analysis Centres (ACs) provided datum-free normal equation matrices in Solution INdependent EXchange (SINEX) format for each 24 h observing session to be combined on a session-by-session basis by a stacking procedure. In this process, common sets of parameters, transformed to identical reference epochs and a prioris, and especially representative relative weights have been taken into account for each session. In order to assess the quality of the combined IVS files, Earth orientation parameters (EOPs) and scaling factors have been derived from the combined normal equation matrices. The agreement of the EOPs of the combined normal equation matrices with those of the individual ACs in terms of weighted root mean square (WRMS) is in the range of 50–60 μas for the two polar motion components and about 3 μs for UT1−UTC. External comparisons with International GNSS Serive (IGS) polar motion components is at the level of 130–170 μas and 21 μs/day for length of day (LOD). The scale of the terrestrial reference frame realized through the IVS SINEX files agrees with ITRF2000 at the level of 0.2 ppb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号