首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

2.
The evolution of high-and low-mass X-ray binaries (HMXB and LMXB) into different types of binary radio pulsars, the ‘high-mass binary pulsars’(HMBP) and ‘low-mass binary pulsars’ (LMBP) is discussed. The HMXB evolve either into Thorne-Zytkow objects or into short-period binaries consisting of a helium star plus a neutron star (or a black hole), resembling Cygnus X-3. The latter systems evolve (with or without a second common-envelope phase) into close binary pulsars, in which the companion of the pulsar may be a massive white dwarf, a neutron star or a black hole ( some final systems may also consist of two black holes). A considerable fraction of the systems may also be disrupted in the second supernova explosion. We discuss the possible reasons why the observed numbers of double neutron stars and of systems like Cyg X-3 are several orders of magnitude lower than theoretically predicted. It is argued that the observed systems form the tip of an iceberg of much larger populations of unobserved systems, some of which may become observable in the future. As to the LMBP, we consider in some detail the origins of systems with orbital periods in the range 1–20 days. We show that to explain their existence, losses of orbital angular momentum (e.g., by magnetic braking) and in a number of cases: also of mass, have to be taken into account. The masses of the low-mass white dwarf companions in these systems can be predicted accurately. We notice a clear correlation between spin period and orbital period for these systems, as well as a clear correlation between pulsar magnetic field strength and orbital period. These relations strongly suggest that increased amounts of mass accreted by the neutron stars lead to increased decay of their magnetic fields: we suggest a simple way to understand the observed value of the ‘bottom’ field strengths of a few times 108 G. Furthermore, we find that the LMBP-systems in which the pulsar has a strong magnetic field (> 1011 G) have an about two orders of magnitude larger birth rate (i.e., about 4 × 10-4 yr-1 in the Galaxy) than the systems with millisecond pulsars (which have B < 109 G). Using the observational fact that neutron stars receive a velocity kick of ∼450 km/s at birth, we find that some 90% of the potential progenitor systems of the strong-field LMBP must have been disrupted in the Supernovae in which their neutron stars were formed. Hence, the formation rate of the progenitors of the strong-field LMBP is of the same order as the galactic supernova rate (4 × 10-3 yr-1). This implies that a large fraction of all Supernovae take place in binaries with a close low-mass (< 2.3 M⊙) companion.  相似文献   

3.
I review our understanding of the evolution of the spin periods of neutron stars in binary stellar systems, from their birth as fast, spin-powered pulsars, through their middle life as accretion-powered pulsars, upto their recycling or “rebirth” as spin-powered pulsars with relatively low magnetic fields and fast rotation. I discuss how the new-born neutron star is spun down by electromagnetic and “propeller” torques, until accretion of matter from the companion star begins, and the neutron star becomes an accretion-powered X-ray pulsar. Detailed observations of massive radio pulsar binaries like PSR 1259-63 will yield valuable information about this phase of initial spindown. I indicate how the spin of the neutron star then evolves under accretion torques during the subsequent phase as an accretion-powered pulsar. Finally, I describe how the neutron star is spun up to short periods again during the subsequent phase of recycling, with the accompanying reduction in the stellar magnetic field, the origins of which are still not completely understood.  相似文献   

4.
We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass  (>0.2 M)  companion. The long orbital period and small eccentricity  ( e = 0.0009)  make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1 Gyr.  相似文献   

5.
We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J 1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (≡ M 1/ M 2) = 10.5 ± 0.5. Our optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M 2 = 0.16 ± 0.02 M⊙, and hence the mass of the neutron star is 1.64 ± 0.22 M⊙, where the error is dominated by that of M 2. The orbital inclination is 52 ± 4°. For an initial neutron star mass of ∼ 1.4 M⊙, only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was ∼ 1 M⊙, our result suggests that the mass transfer may have been non-conservative.  相似文献   

6.
The Hertzsprung-Russell diagram of the Large Magellanic Cloud compiled recently by Fitzpatrick & Garmany (1990) shows that there are a number of supergiant stars immediately redward of the main sequence although theoretical models of massive stars with normal hydrogen abundance predict that the region 4.5 ≤ logT eff ≤ 4.3 should be un-populated (“gap”). Supergiants having surface enrichment of helium acquired for example from a previous phase of accretion from a binary companion, however, evolve in a way so that the evolved models and observed data are consistent — an observation first made by Tuchman & Wheeler (1990). We compare the available optical data on OB supergiants with computed evolutionary tracks of massive stars of metallicity relevant to the LMC with and without helium-enriched envelopes and conclude that a large fraction ( 60 per cent) of supergiant stars may occur in binaries. As these less evolved binaries will later evolve into massive X-ray binaries, the observed number and orbital period distribution of the latter can constrain the evolutionary scenarios of the supergiant binaries. The distributions of post main sequence binaries and closely related systems like WR + O stars are bimodal-consisting of close and wide binaries in which the latter type is numerically dominating. When the primary star explodes as a supernova leaving behind a neutron star, the system receives a kick and in some cases can lead to runaway O-stars. We calculate the expected space velocity distribution for these systems. After the second supernova explosion, the binaries in most cases, will be disrupted leading to two runaway neutron stars. In between the two explosions, the first born neutron star’s spin evolution will be affected by accretion of mass from the companion star. We determine the steady-state spin and radio luminosity distributions of single pulsars born from the massive stars under some simple assumptions. Due to their great distance, only the brightest radio pulsars may be detected in a flux-limited survey of the LMC. A small but significant number of observable single radio pulsars arising out of the disrupted massive binaries may appear in the short spin period range. Most pulsars will have a low velocity of ejection and therefore may cluster around the OB associations in the LMC.  相似文献   

7.
The aim of this work is to investigate the effect of element diffusion on the evolution of helium white dwarfs. To this end, we couple the multicomponent flow equations that describe gravitational settling, chemical and thermal diffusion to an evolutionary code. We compute the evolution of a set of helium white dwarf models with masses ranging from 0.169 to 0.406 M. In particular, several low-mass white dwarfs have been found in binary systems as companion to millisecond pulsars. In these systems, pulsar emission is activated by mass transfer episodes so that, if we place the zero-age point at the end of such mass transfer, then the pulsar and the white dwarf ages should be equal. Interestingly enough, available models of helium white dwarfs neglect element diffusion. Using such models, good agreement has been found between the ages of the components of the PSR J1012+5307 system. However, recent observations of the PSR B1855+09 system cast doubts on the correctness of such models, which predict a white dwarf age twice as long as the spin-down age of the pulsar. In this work, we find that element diffusion induces thermonuclear hydrogen shell flashes for models in the mass interval 0.18≲ M /M ≲ 0.41 . We show, in particular, that the occurrence of these diffusion-induced flashes eventually leads to white dwarf models with hydrogen envelope masses too small to support any further nuclear burning, thus implying much shorter cooling ages than in the case when diffusion is neglected. In particular, excellent agreement is found between the ages of PSR B1855+09 system components, solving the age discrepancy from first principles.  相似文献   

8.
We report the discovery, in an Extreme Ultraviolet Explorer ( EUVE ) short-wavelength spectrum, of an unresolved hot white dwarf companion to the 5th magnitude B5Vp star HR 2875. This is the first time that a non-interacting white dwarf+B star binary has been discovered: previously, the earliest type of star known with a white dwarf companion was Sirius (A1V). As the white dwarf must have evolved from a main-sequence progenitor with a mass greater than that of a B5V star (≯6.0 M⊙), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial–final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39 000 and 49 000 K. We also argue that this degenerate star is likely to have a mass significantly greater than the mean mass for white dwarf stars (≈0.55 M⊙). Finally, we suggest that other bright B stars (e.g. θ Hya) detected in the extreme ultraviolet surveys of the ROSAT Wide Field Camera and EUVE may also be hiding hot white dwarf companions.  相似文献   

9.
In binary radio pulsars with a main-sequence star companion, the spin-induced quadrupole moment of the companion gives rise to a precession of the binary orbit. As a first approximation one can model the secular evolution caused by this classical spin-orbit coupling by linear-in-time changes of the longitude of periastron and the projected semi-major axis of the pulsar orbit. This simple representation of the precession of the orbit neglects two important aspects of the orbital dynamics of a binary pulsar with an oblate companion. First, the quasiperiodic effects along the orbit, owing to the anisotropic 1/ r 3 nature of the quadrupole potential. Secondly, the long-term secular evolution of the binary orbit, which leads to an evolution of the longitude of periastron and the projected semi-major axis, which is non-linear in time.   In this paper a simple timing formula for binary radio pulsars with a main-sequence star companion is presented which models the short-term secular and most of the short-term periodic effects caused by the classical spin-orbit coupling. I also give extensions of the timing formula that account for long-term secular changes in the binary pulsar motion. It is shown that the short-term periodic effects are important for the timing observations of the binary pulsar PSR B1259–63. The long-term secular effects are likely to become important in the next few years of timing observations of the binary pulsar PSR J0045–7319. They could help to restrict or even determine the moments of inertia of the companion star and thus probe its internal structure.   Finally, I reinvestigate the spin-orbit precession of the binary pulsar PSR J0045–7319 since the analysis given in the literature is based on an incorrect expression for the precession of the longitude of periastron. A lower limit of 20° for the inclination of the B star with respect to the orbital plane is derived.  相似文献   

10.
We intend to point out that existing evolutionary scenario for the genesis of the binary radio pulsars like PSR 0655+64 (P1 d) and 1913+16 (P8 hr) having short orbital periods and relatively massive companion (>0.5M *) is inconsistent in that it does not allow for a prolonged phase of angular momentum transfer. We propose here a modified evolutionary scenario where there is such a prolonged phase of angular momentum transfer from a low mass helium star to the neutron star mediated by an accretion disk along the so-called caseB evolutionary track.  相似文献   

11.
We report the discovery of PSR J1753−2240 in the Parkes Multibeam Pulsar Survey data base. This 95-ms pulsar is in an eccentric binary system with a 13.6-d orbital period. Period derivative measurements imply a characteristic age in excess of 1 Gyr, suggesting that the pulsar has undergone an episode of accretion-induced spin-up. The eccentricity and spin period are indicative of the companion being a second neutron star, so that the system is similar to that of PSR J1811−1736, although other companion types cannot be ruled out at this time. The companion mass is constrained by geometry to lie above 0.48 solar masses, although long-term timing observations will give additional constraints. If the companion is a white dwarf or a main-sequence star, optical observations may yield a direct detection of the companion. If the system is indeed one of the few known double neutron star systems, it would lie significantly far from the recently proposed spin-period/eccentricity relationship.  相似文献   

12.
We are undertaking a high-frequency survey of the Galactic plane for radio pulsars, using the 13-element multibeam receiver on the 64-m Parkes radio telescope. We describe briefly the survey system and some of the initial results. PSR J1811−1736, one of the first pulsars discovered with this system, has a rotation period of 104 ms. Subsequent timing observations using the 76-m radio telescope at Jodrell Bank show that it is in an 18.8-d, highly eccentric binary orbit. We have measured the rate of advance of periastron which indicates a total system mass of 2.6±0.9 M, and the minimum companion mass is about 0.7 M. This, the high orbital eccentricity and the recycled nature of the pulsar suggest that this system is composed of two neutron stars, only the fourth or fifth such system known in the disc of the Galaxy.  相似文献   

13.
Close binaries can evolve through various ways of interaction into compact objects (white dwarfs, neutron stars, black holes). Massive binary systems (mass of the primaryM 1 larger than 14 to 15M 0) are expected to leave, after the first stage of mass transfer a compact component orbiting a massive star. These systems evolve during subsequent stages into massive X-ray binaries. Systems with initial large periode evolve into Be X-ray binaries.Low mass X-ray sources are probably descendants of lower mass stars, and various channels for their production are indicated. The evolution of massive close binaries is examined in detail and different X-ray stages are discussed. It is argued that a first X-ray stage is followed by a reverse extensive mass transfer, leading to systems like SS 433, Cir X1. During further evolution these systems would become Wolf-Rayet runaways. Due to spiral in these system would then further evolve into ultra short X-ray binaries like Cyg X-3.Finally the explosion of the secondary will in most cases disrupt the system. In an exceptional case the system remains bound, leading to binary pulsars like PSR 1913+16. In such systems the orbit will shrink due to gravitational radiation and finally the two neutron stars will coalesce. It is argued that the millisecond pulsar PSR 1937+214 could be formed in this way.A complete scheme starting from two massive ZAMS stars, ending with a millisecond pulsar is presented.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia 3–7 June, 1983.  相似文献   

14.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

15.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

16.
We report on the discovery of a binary pulsar, PSR J1740−3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350 kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11 M. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045−7319.  相似文献   

17.
An examination of the existing period searches for 2CG195 + 4 leads to the conclusion that the 59 second periodicity is highly significant only for the 1981 March 17–18 detection of Bignami, Caraveo & Paul (1984). The statistical significance is increased substantially if the pulsation period is half the previously reported value. The period derivative is not well determined. Here we propose that 2CG 195 + 4 is a neutron star powered by accretion from a low (≲ 1M ) mass main-sequence companion. A distance of a few hundred pc would imply that the neutron star is a fast rotator and is spinning down.  相似文献   

18.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

19.
We review various aspects of the evolutionary history of massive X-ray binaries. It is expected that moderately massive close binaries evolve to Be X-ray binaries, while very massive systems evolve to standard X-ray binaries.The compact objects are formed through supernova explosions. The fairly low galactic latitudes of those systems indicate that the explosion should, in general, not have accelerated the system to a velocity larger than 50kms–1. This implies that the mass of the exploding stars is in general less than 5 to 6M .After the explosion, tidal forces will circularize the orbit of short period systems. Even if the tidal evolution has been completed, the expansion of the optical star during the course of its evolution will continously disturb the stability of the orbit. Short period systems with large mass ratio may eventually become tidally unstable. Cen X-3 may be an example of such a system. The predicted rate of the orbital period decrease of Cen X-3 is in agreement with the observed rate.A way to represent the rotational and magnetic evolution of neutron stars in close binary systems is presented. The observed distribution of the pulsation periods of X-ray pulsars with Be companions is consistent with initial magnetic fields of 1012–1013 G of the neutron stars. We suggest that the fast X-ray pulsars 4U 0115+63 and A 0538-66 are young neutron stars, while Cen X-3 and SMC X-1 are recycled pulsars.The evolutionary relationship between massive X-ray binaries, binary pulsars, and millisecond pulsars is also discussed.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

20.
Supernovae of both Type I (hydrogen-poor) and Type II (hydrogen-rich) can be expected to occur among binary stars. Among massive stars (>10 M•), the companion makes it more difficult for the primary to develop an unstable core of >1.4.M• while still retaining the extended, hydrogen-rich envelope needed to make a typical Type II light curve. Among 1–10 M• stars, on the other hand, a companion plays a vital role in currently popular models for Type I events, by transferring material to the primary after it has become a stable white dwarf, and so driving it to conditions where either core collapse or explosive nuclear burning will occur. Several difficulties (involving nucleosynthesis, numbers and lifetimes of progenitors, the mass-transfer mechanism,etc.) still exist in these models. Some of them are overcome by a recent, promising scenario in which the secondary also evolves to a degenerate configuration, and the two white dwarfs spiral together to produce a hydrogen-free explosion, long after single stars of the same initial masses have ceased to be capable of fireworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号