首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The issue is addressed as to whether the horizontal-to-vertical spectral ratio (HVSR) method is sensitive to the amplitude of ground motion from near-field earthquakes. Twenty-one three-component accelerograms from two closely located similar soil sites in the town of Lefkas are used. The recordings represent 17 earthquakes covering a wide range of magnitudes, epicentral distances and azimuths. Peak horizontal accelerations (PGA) and velocities (PGV) lie in the ranges 20–540 cm/s2 and 1.4–55.2 cm/s. For each HVS ratio, the site's fundamental-resonance frequency, fres, is determined visually. Linear correlation analysis shows that fres is strongly (negatively) correlated to PGA and PGV (r between −0.7 and −0.8); no correlation is found with resonance amplitude or epicentral distance. We show that the observed correlation is attributable to soil nonlinearity and indicate how weak-motion estimates of fres can be corrected for use in assessing site response during strong shaking.  相似文献   

2.
The site response at 15 stations in the Adana-Ceyhan region (Southern Turkey) is calculated from the recordings of aftershocks of June 27, 1998 Adana-Ceyhan earthquake (MS=6.2) by using the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods. While the two methods are in good harmony at a few stations in determining the site effects, they show differences on the estimated amplifications or on the site resonance frequencies at most stations. It was not clear which one of the two methods underestimates or overestimates the amplification values. We observe that at some stations, where the local site conditions are rather complex, the vertical component records are strongly influenced from the local soil conditions. Thus, the HVSR method fails at these stations. The SSR method underestimates the amplifications at some stations since the rock site, selected as reference site, has its own site response and/or the path correction we applied, considering the geometrical spreading factor only, is insufficient. At the sites where high intensity values were observed, we found high amplifications. The fundamental soil frequencies characterize the damage properties observed in the Adana-Ceyhan earthquake. The fundamental soil frequency is nearly at 1.1 Hz at the Ceyhan site, where severe damage was observed in the 5–6 story buildings, while the fundamental soil frequency is between 3–6 Hz at the Adana site, where damage was in the low-story buildings. Therefore, in addition to inefficient construction practices, it is clear that the resonance effects have also contributed to the observed damage.  相似文献   

3.
4.
The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F p and the average site amplification in different frequency bands of 1.0–5.0 Hz, 5.0–10.0 Hz and 1.0–10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V s20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance D Aspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold of PGA > 300 cm/s2 or PGV > 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.  相似文献   

5.
采用汶川地震强余震26个强震动台站记录,基于H/V谱比法,计算台站场地的强、弱震作用下场地卓越频率之比R_(fp)和体现强、弱震作用下场地H/V谱比曲线差异程度的DNL,进而识别并分析场地非线性反应特征。结果显示,R_(fp)、DNL与PGA之间存在显著相关性;其中10个台站出现明显的场地非线性反应特征;大部分台站发生场地非线性反应的PGA阈值为100 cm/s~2,部分为50 cm/s~2;实例证明,因某些台站不易通过H/V谱比法识别场地卓越频率,因此采用R_(fp)识别场地非线性反应具有一定局限性。  相似文献   

6.
We investigate the dependence of the S-wave high-frequency spectral-decay parameter, κ (“kappa”) — a measure of wave attenuation — on ground-motion amplitude. 21 three-component accelerograms from two adjacent sediment sites in the town of Lefkas, western Greece, are used, representing 17 earthquakes with magnitudes Mw 4.7–7.0 and hypocentral distances 12–93 km. Recorded peak horizontal ground accelerations (PGA) and velocities (PGV) are 22–540 cm/s2 and 1.3–54.5 cm/s.Fourier amplitude spectra are computed for S-wave windows, and the frequency range is visually determined where the high-frequency spectral decay can be approximated by a straight line on the linear-log plot; its slope (and hence κ) is computed by linear regression. κ is found to depend on hypocentral distance as κ=0.108+0.058R (r=0.518).As PGV increases from 1.3 to 54.5 cm/s, κ0 (κ at 0 km, characterising inelastic attenuation in the site's subsurface geology) varies between 0.060 and 0.160 s. κ0 is found to correlate very strongly with log MGA (r=0.645) (MGA — mean horizontal acceleration in the S-wave window) but also with log PGA (r=0.447) and log PGV (r=0.627). We attribute this behaviour to sediment non-linearity (shear-modulus degradation), resulting in the decrease of the site's dominant-resonance frequency (from about 3.5 to 2.4 Hz) and leading to the increase of κ0. Our results imply that at sediment sites, an important contribution to κ comes from wave attenuation (damping) in the softest sediments and show that κ0 is amplitude dependent, thus being a measure of sediment non-linearity.  相似文献   

7.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

8.
The free-field accelerograms along Feitsui Canyon are analyzed and modeled by a numerical scheme to study the effect of canyon topography. Since six strong-motion accelerometers (SC1–SC6) were deployed along the Feitsui Canyon in 1991; there are 14 earthquakes (4.9≤ML≤6.6) recorded by these stations until June 1996, but only five triggered all six stations. The maximum PGA value is 68.6 cm s−2 recorded at station SC1. According to the present data, the effect of the dam on the ground motions at canyon stations can be negligible. The amplitude of ground motion on the slopes of the canyon is bigger than that at its trough. The integral equation method is applied to a two dimensional model of Feitsui Canyon to study the effects of the canyon topography. We choose the ground motion of SC3 or SC4 station at the trough of the canyon as the input motion for the model, which is then used to predict the ground motion at the other five stations. Apart from the earthquake close to the damsite, the simple model can reproduce the observed accelerations at all frequencies below 4 Hz. Overall, the numerical method can well predict the ground motion along the canyon, although the high-frequency simulation is underestimated.  相似文献   

9.
System identification estimation of soil properties at the Lotung site   总被引:3,自引:0,他引:3  
Dynamic properties of the soils at the Lotung test site, Lotung, Taiwan, are estimated from seismic vertical array measurements (input–output data sets) using both time-invariant and time-variant parametric modeling methods (system identification). Soil properties are directly mapped from model parameters to an equivalent lumped mass model of the soil interval. Shear stiffness and damping ratios were calculated for 8 events with ML ranging from 4.5 to 7.0. Shear stiffness ranged between 0.5 and 6 MN/m, inversely proportional to PGA. The equivalent viscous damping ratio varied from 2 to 30% of critical damping, proportional to PGA. Degradation of soil behavior, while less pronounced with increasing depth, consistently occurs above a peak input acceleration of 0.07 g. Although “non-linear” behavior is evident above 0.17 g, Event 7 (0.21 g) is accurately predicted using a linear constant parameter model estimated from the smaller Event 8 aftershock ground motions.  相似文献   

10.
A case study of the dayside cusp/cleft region during an interval of stationary magnetospheric convection (SMC) on November, 24, 1981 is presented, based on detailed measurements made by the AUREOL-3 satellite. Layered small-scale field-aligned current sheets, or loops, superimposed to a narrow V-shaped ion dispersion structure, were observed just equatorward from the region of the “cusp proper”. The equatorward sheet was accompanied by a very intense and short (less than 1 s) ion intensity spike at 100 eV. No major differences were noted of the characteristics of the LLBL, or “boundary cusp”, and plasma mantle precipitation during this SMC period from those typical of the cusp/cleft region for similar IMF conditions. Simultaneous NOAA-6 and NOAA-7 measurements described in Despirak et al. were used to estimate the average extent of the “cusp proper” (defined by dispersed precipitating ions with the energy flux exceeding 10−3 erg cm−2 s−1) during the SMC period, as ≈0.73∼ ILAT width, 2.6–3.4 h in MLT, and thus the recently merged magnetic flux, 0.54–0.70 × 107 Wb. This, together with the average drift velocity across the cusp at the convection throat, ≈0.5 km s−1, allowed to evaluate the cusp merging contribution to the total cross-polar cap potential difference, ≈33.8–43.8 kV. It amounts to a quite significant part of the total cross-polar cap potential difference evaluated from other data. A “shutter” scenario is suggested for the ion beam injection/penetration through the stagnant plasma region in the outer cusp to explain the pulsating nature of the particle injections in the low- and medium-altitude cusp region.  相似文献   

11.
The M s7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the M s8.0 Wenchuan earthquake in 2008 and M s7.1 Yushu earthquake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Observation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as ?1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3–1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.  相似文献   

12.
A hybrid statistical-deterministic approach has been applied to estimate strong ground motion parameters (PGA, spectral ordinates) in South-Eastern Sicily for a M = 7 earthquake. A number of 100 different rupture processes have been simulated along a composite fault system representing two segments of the Ibleo-Maltese fault scarp. Map at regional scale of mean PGA in the 0.5–20 Hz frequency band shows highest values (0.4–0.5 g) nearby and North of Catania, due to a dominant directivity effect. The COV parameter, which expresses the variability of PGA values as a function of source complexity, is higher in the region nearby and South of the town of Augusta, where, depending on the rupture history, rather large PGA values can be observed (>0.4 g). PGA attenuation curves suggest that an azimuthal variation could be related to the source extent and directivity. The response and pseudo acceleration spectra are computed for different sites in the town of Catania including an approximate 1D site response. Ground motion amplification effects at high frequency (5–20 Hz) are produced by thin shallow layer of soft clay, loose pyroclastites and fill. We observe small amplification effects, in the frequency ranges 2–3 Hz and 5–10 Hz, in sites where recent alluvia reach a thickness of some tens of meters. Otherwise, sites located on outcrops of massive lavas show moderate attenuation.  相似文献   

13.
The strong ground motions for the 2001 Bhuj (M w 7.6) India earthquake have been estimated on hard rock and B/C boundary (NEHRP) levels using a recently modified version of stochastic finite fault modeling based on dynamic corner frequency (Motazedian and Atkinson in Bull Seismol Soc Am 95, 995–1010 2005). Incorporation of dynamic corner frequency removes the limitations of earlier stochastic methods. Simulations were carried out at 13 sites in Gujarat where structural response recorder (SRR) recordings are available. In addition, accelerograms were simulated at the B/C boundary at a large number of points distributed on a grid. The corresponding response spectra have also been estimated. The values of peak ground accelerations and spectral accelerations at three periods (0.4, 0.75 and 1.25 s) are presented in the form of contour maps. The maximum value of peak ground acceleration (PGA) in the center of meizoseismal zone is 550 cm/s2. The response spectral acceleration in same zone is 900 cm/s2 (T = 0.4 s), 600 cm/s2 (T = 0.75 s) and 300 cm/s2 (T = 1.25 s). The innermost PGA contour is on the fault plane. A comparison of the PGA values obtained at 13 sites in this study with those obtained in earlier studies on the same sites, but employing different methods, show that the present PGA values are comparable at most of the sites. The rate of decay of PGA values is fast at short distances as compared to that at longer distances. The PGA values obtained here put some constraints on the expected values from a similar earthquake in the region. A synthetic intensity map has been prepared from the estimated values of PGA using an empirical relation. A comparison with the reported intensity map of the earthquake shows the synthetic MMI values, as expected, are lower by 1 unit compared to reported intensity map. The contour map of PGA along with the contour maps of spectral acceleration at various periods permit the assessment of damage potential to various categories of houses and other structures. Such information will be quite important in planning of mitigation and disaster management programs in the region.  相似文献   

14.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   

15.
Fault dimensions,displacements and growth   总被引:15,自引:0,他引:15  
Maximum total displacement (D) is plotted against fault or thrust width(W) for 65 faults, thrusts, and groups of faults from a variety of geological environments. Displacements range from 0.4 m to 40 km and widths from 150 m to 630 km, and there is a near linear relationship betweenD andW 2. The required compatibility strains (e s) in rocks adjacent to these faults increases linearly withW and with and ranges frome s=2×10–4 toe s=3×10–1. These are permanent ductile strains, which compare with values ofe s=2×10–5 for the elastic strains imposed during single slip earthquake events, which are characterised by a linear relationship between slip (u) andW.The data are consisten with a simple growth model for faults and thrusts, in which the slip in successive events increases by increments of constant size, and which predicts a relationship between displacement and width of the formD=cW 2. Incorporation of constant ductile strain rate into the model shows that the repreat time for slip events remains constant throughout the life of a fault, while the displacement rate increases with time. An internally consistent model withe s=2×10–5, giving repeat times of 160 years and instantaneous displacement rates of 0.02 cm/yr, 0.2 cm/yr, and 2.0 cm/yr when total displacement is 1 m, 100 m, and 10 km, and slip increasing by 0.5 mm with each event, gives a good approximation of the data. The model is also applicable to stable sliding, the slip rate varying with ductile strain rate and withW 2.  相似文献   

16.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

17.
局部场地条件是决定场地地震动强度和频谱的重要因素,基于强震动和脉动记录的统计分析,获取表征场地条件影响的特征参数已成为确定工程场地设计地震动的较经济和实用方法,特别是对于大范围或难以开展现场勘测的工程场地.利用日本KiK-net台网强震动记录计算分析了台站场地地震动水平/竖向谱比(HVSR)与地表/基底谱比(SBSR)...  相似文献   

18.
While rockbursts from underground copper mining in Western Poland normally produce surface peak ground accelerations (PGA) and velocities of 0.05–0.1 g and 1–3 cm/s, occasionally these peak motions may exceed 0.15 g and 10 cm/s, respectively. These larger motions are of considerable concern and an investigation has been undertaken to define the nature of these larger induced ground motions. This paper compares these rockburst motions with low intensity earthquakes. Various strong motion parameters such as PGA, peak ground velocity (PGV) and displacements as well as strong motion duration, Arias intensity, Fourier and response spectra are compared with those from earthquakes. It is concluded that although short duration is the most obvious parameter that differentiates rockbursts from earthquakes, in fact their high dominant frequencies, which result in high PGA/PGV ratios differentiate them the most. Two types of rockburst-induced ground motions are indicated in this paper: typical—with 3–6 months return period and characteristic, high frequency content—as well as rare events similar to shallow, low intensity earthquakes.  相似文献   

19.
Meteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s = 1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s = 1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5–10 ms–1) during early January and maxima (15–20 ms–1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4–6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5–10 ms–1 in amplitude) with distinct periods (i.e., 5 days and 8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s = 1, but that at 68°S there is probably a mixture between s = 1 and other zonal wavenumber oscillations (most probably s = 2). The mechanism responsible for the existence of the 12-h s = 1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s = 1 feature, and thermal excitation in the troposphere.  相似文献   

20.
The spatial relationship between areas with severely damaged (red-tagged) buildings and areas with large strains in the soil (indicated by reported breaks in the water distribution system), observed during the 1994 Northridge earthquake, is analysed. It is shown that these areas can be separated almost everywhere. Minimal overlapping is observed only in the regions with very large amplitudes of shaking (peak ground velocity exceeding about 150 cm s−1). One explanation for this remarkable separation is that the buildings on ‘soft’ soils, which experienced nonlinear strain levels, were damaged to a lesser degree, possibly because the soil absorbed a significant portion of the incident seismic wave energy. As a result, the total number of severely damaged (red-tagged) buildings in San Fernando Valley, Los Angeles and Santa Monica may have been reduced by a factor of two or more. This interpretation is consistent with the recorded peak accelerations of strong motion in the same area. It is concluded that significant reduction in the potential damage to wood frame single family dwellings may be expected in areas where the soil experiences ‘large’ strains (beyond the linear range) during strong earthquake shaking, but not significant differential motions, settlement or lateral spreading, near the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号