首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raindrop size,rainfall intensity and runoff discharge affect the detachment and transportation of soil particles.Among these three factors,the rainfall intensity seems to be more important because it can change other two factors.Storm patterns can be determined by changing the rainfall intensity during the storm.Therefore,the objective of this research is to test the influence of storm pattern on runoff,soil erosion and sediment concentration on a rangeland soil slope under field rainfall simulation.Four storm rainfall intensity patterns were selected for examining the effects of variations in storm event characteristics on soil erosion processes.The selected storm patterns were:I(45,55 and 70 mm h-1);II(45,70 and 55 mm h-1);III:(70,55 and 45 mm h-1);and IV(55,45 and 70 mm h1).The last pattern is a new one instead of the uniform pattern which has been sufficiently studied in previous researches.The experiments were conducted in field plots(in Kojour watershed,Mazandaran Province,Iran)with an area of one square meter and an constant slope gradient of 18%,surrounded by galvanised sheets.Following the nonuniform prioritization of the storm patterns for the studied variables,time to runoff(I>II>IV>III),runoff volume(III>IV>II>I),sediment concentration(IV>III>I>II)and soil erosion(III>IV>II>I)),it can be generally inferred that each pattern has specific effect on soil erosion processes during a storm.The results of the general linear model(GLM)test indicated that the effects of storm pattern on time to runoff,total runoff volume,runoff coefficient and soil erosion were significant at a level of 99%.The Duncan test showed that the storm patterns can be divided into three groups of III,IV;II;I(for time to runoff),I,II;IV,III(for runoff coefficient),and I;II;IV,III(for runoff volume and soil erosion).  相似文献   

2.
Purple soil is highly susceptible for overland flow and surface erosion, therefore understanding surface runoff and soil erosion processes in the purple soil region are important to mitigate flooding and erosion hazards. Slope angle is an important parameter that affects the magnitude of runoff and thus surface erosion in hilly landscapes or bare land area. However, the effect of slope on runoff generation remains unclear in many different soils including Chinese purple soil. The aim of this study was to investigate the relationship between different slope gradients and surface runoff for bare-fallow purple soil, using 5 m × 1.5 m experimental plots under natural rainfall conditions. Four experimental plots(10°, 16°, 20° and 26°) were established in theYanting Agro-ecological Experimental Station of Chinese Academy of Science in central Sichuan Basin. The plot was equipped with water storage tank to monitor water level change. Field monitoring from July 1 to October 31, 2012 observed 42 rainfall events which produced surface runoff from the experimental plots. These water level changes were converted to runoff. The representative eight rainfall events were selected for further analysis, the relationship between slope and runoff coefficient were determined using ANOVA, F-test, and z-score analysis. The results indicated a strong correlation between rainfall and runoff in cumulative amount basis. The mean value of the measured runoff coefficient for four experimental plots was around 0.1. However, no statistically significant relationship was found between slope and runoff coefficient. We reviewed the relationship between slope and runoff in many previous studiesand calculated z-score to compare with our experimental results. The results of z-score analysis indicated that both positive and negative effects of slope on runoff coefficient were obtained, however a moderate gradient(16°-20° in this study) could be a threshold of runoff generation for many different soils including the Chinese purple soil.  相似文献   

3.
All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.  相似文献   

4.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   

5.
In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vege tation, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami in the central part of Japan. Based on the mea surements of runoff, mean soil erosion depth, and sediment yield, etc. , the results suggest the following characteristics in the process of surface erosion in the experimental area. (1) The occurrence of sediment discharge is interrupted; (2) Surface runoff is a saturated overland flow; (3) The mean soil erosion depth is thick compared with other areas in Mt. Tanakami;(4) Sediment discharge process is detachment- limited.  相似文献   

6.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

7.
Subsurface flow processes in sloping cropland of purple soil   总被引:3,自引:1,他引:2  
Subsurface flow is a prominent runoff process in sloping lands of purple soil in the upper Yangtze River basin.However,it remains difficult to identify and quantify.In this study,in situ runoff experimental plots were used to measure soil moisture dynamics using an array of time domain reflectometry(TDR) together with overland flow and subsurface flow using isolated collecting troughs.Frequency of preferential flow during rainfall events and the controls of subsurface flow processes were investigated through combined analysis of soil properties,topography,rainfall intensity,initial wetness,and tillage.Results showed that subsurface flow was ubiquitous in purple soil profiles due to welldeveloped macropores,especially in surface soils while frequency of preferential flow occurrence was very low(only 2 cases in plot C) during all 22 rainfall events.Dry antecedent moisture conditions promoted the occurrence of preferential flow.However,consecutive real-time monitoring of soil moisture at different depths and various slope positions implied the possible occurrence of multiple subsurface lateral flows during intensive storms.Rainfall intensity,tillage operation,and soil properties were recognized as main controls of subsurface flow in the study area,which allows the optimization of management practices for alleviating adverse environmental effects of subsurface flow in the region.  相似文献   

8.
Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.  相似文献   

9.
The Sediment Delivery Ratio (SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events (SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus (R2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe (R2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus (R2=0.84, P<0.01) but also significantly related to the SDRe (R2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.  相似文献   

10.
针对川中丘陵区紫色土坡耕地严重水土流失,选取典型代表李子溪流域为研究区,构建了其SWAT的模型数据库,包括地形、土壤、气象和土地利用数据库。并利用赵家祠水文站1970-1979年的实测径流和泥沙资料,对该流域的SWAT模型参数进行率定再采用1980-1986年的实测资料,对模型的适用性进行验证,同时用相对误差Re和Nash确定性系数Ens评价模拟效果。结果显示,径流和泥沙模拟相对误差均在±15%范围以内,Nash确定性系数均大于等于0.70,说明SWAT模型对李子溪流域年、月径流和年泥沙量的模拟精度较高。同时模拟值与实测值和降雨量的变化趋于一致。可见,用SWAT模型模拟和预测雨量较为丰沛、土壤侵蚀较严重的紫色丘陵地区的产流产沙是实用、可行的。  相似文献   

11.
Debris flows often occur in landslide deposits during heavy rainstorms. Debris flows are initiated by surface water runoff and unsaturated seepage under rainfall conditions. A physical model based on an infinitely long, uniform and void-rich sediment layer was applied to analyze the triggering of debris-flow introduced in landslide deposits. To determine the initiation condition for rainfall-induced debris flows, we conducted a surface water runoff and saturated-unsaturated seepage numerical program to model rainfall infiltration and runoff on a slope. This program was combined with physical modeling and stability analysis to make certain the initiation condition for rainfall-introduced debris flows. Taking the landslide deposits at Wenjiagou gully as an example, the initiation conditions for debris flow were computed. The results show that increase height of surface-water runoff and the decrease of saturated sediment shear strength of are the main reasons for triggering debris-flows under heavy rainfall conditions. The debris-flow triggering is affected by the depth of surface-water runoff, the slope saturation and shear strength of the sediment.  相似文献   

12.
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Six-years after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30% vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100% ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover, while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover, respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient. Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4 folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.  相似文献   

13.
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.  相似文献   

14.
Rainfall is an important factor to trigger the debris flow.Numerical simulation on the responses of slopes and the initiation of debris flow under rainfall was processed by using the software FLAC2D based on the soil parameters in Weijia Gully,Beichuan County,Sichuan Province,China.The effects of the slope angle,rainfall intensity,soil parameters on the developments of the stress and pore pressure and deformation of the slope were studied.It indicates that large displacements of the slope are mainly located near the slope toe.With the increase of the rainfall intensity the stability of the slope decreases and so the debris-flow is easy to occur.  相似文献   

15.
Soil erosion in hilly areas of the Sichuan Basin is a serious concern over sustainable crop production and sound ecosystem. A 3-year experiment was conducted using the method of runoff plots to examine the effects of terracing and agroforestry in farmland systems on soil and water conservation of slope fields in the hilly areas in Jianyang County, Sichuan Province, Southwestern China. A power function (Y = aX^b) can statistically describe the relationship between water runoff (Y) and rainfall (X). The regression equation for the treatment of sloping terraces with crops (Plot 2) is remarkably different from that for the treatment of sloping terraces with grasses and trees (Plot 1) and the conventional up- and down-slope crop system (Plot 3) regarding equation coefficients, while regression equations are similar between Plot 1 and Plot 3. Water runoff amount and runoff coefficient of slope fields increased by 21.5-41.0 % and 27.5 - 69.7 % respectively, compared to those of sloping terraces, suggesting that terracing notably reduced the water runoff in the field. In the case of sloping terraces, lower amount of water runoff was observed on sloping terraces with crops than on sloping terraces with grasses and trees. Sediment yields on the slope fields in the normal year of rainfall distribution were notably higher (34.41 - 331.67 % and 37.06-403.44 % for Plot 1 and Plot 2, respectively) than those on sloping terraces, implying that terracing also plays a significant role in the reduction in soil erosion. It is suggested that terracing with crops is significantly effective for soil and water conservation in cultivated farmland, while the conventional practice of up- and down- slope cultivation creates high rates of water runoff and soil sediment transport. Terracing with grasses and fruit trees shows a less reduction in water runoff than terracing with crops, which was observed in the 3-year experiments.  相似文献   

16.
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.  相似文献   

17.
泥质砂岩残积土作为一种结构性很强的特殊土, 具有崩解性强、抗冲蚀性差以及扰动性极大的特点, 对工程建设有较大影响。为了探究泥质砂岩残积土边坡降雨冲刷机理, 设计了边坡降雨冲刷试验, 通过现场三维激光扫描技术测试分析了其表面冲刷效应; 利用高密度电法进一步明确了泥质砂岩残积土边坡的入渗特性、表面冲刷演化机制及冲刷破坏机理。结果表明: 冲刷试验的最初阶段, 降水入渗强且主要向坡脚处运移, 坡表未形成明显的细沟; 冲刷试验中期, 坡脚处土体最先达到饱和而形成坡面径流, 细沟贯通扩大形成小规模冲槽以及片蚀区; 冲刷试验后期, 坡面中部和坡脚处土体冲蚀严重, 坡脚处的冲槽向上部延伸, 片蚀区扩大, 导致表层土体结构发生变化, 渗透性差异明显; 泥质砂岩残积土坡体降雨冲刷主要划分为表层溅蚀、下层潜蚀和细沟贯通3个阶段, 坡面土体流失主要发生在最后一个阶段, 细沟率达到最高值16.9%, 细沟贯通率也高达0.74。研究结果可以为深入探讨泥质砂岩残积土边坡冲蚀防护和研究冲蚀防护机理提供基础资料。   相似文献   

18.
STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU   总被引:1,自引:0,他引:1  
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.  相似文献   

19.
Improved understanding of the effect of shrub cover on soil erosion process will provide valuable information for soil and water conservation programs.Laboratory rainfall simulations were conducted to determine the effects of shrubs on runoff and soil erosion and to ascertain the relationship between the rate of soil loss and the runoff hydrodynamic characteristics.In these simulations a 20° slope was subjected to rainfall intensities of 45,87,and 127 mm/h.The average runoff rates ranged from 0.51 to 1.26 mm/min for bare soil plots and 0.15 to 0.96 mm/min for shrub plots.Average soil loss rates varied from 44.19 to 114.61 g/(min·m~2) for bare soil plots and from 5.61 to 84.58 g/(min·m~2) for shrub plots.There was a positive correlation between runoff and soil loss for the bare soil plots,and soil loss increased with increased runoff for shrub plots only when rainfall intensity is 127 mm/h.Runoff and soil erosion processes were strongly influenced by soil surface conditions because of the formation of erosion pits and rills.The unit stream power was the optimal hydrodynamic parameter to characterize the soil erosion mechanisms.The soil loss rate increased linearly with the unit stream power on both shrub and bare soil plots.Critical unit stream power values were 0.004 m/s for bare soil plots and 0.017 m/s for shrub plots.  相似文献   

20.
A review on rill erosion process and its influencing factors   总被引:8,自引:0,他引:8  
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号